Search results for: sectoral output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2147

Search results for: sectoral output

1187 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 181
1186 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 130
1185 Trade Liberalisation and South Africa’s CO2 Emissions

Authors: Marcel Kohler

Abstract:

The effect of trade liberalization on environmental conditions has yielded a great deal of debate in the current energy economics literature. Although research on the relationship between income growth and CO2 emissions is not new in South Africa, few studies address the role that South Africa’s foreign trade plays in this context. This paper undertakes to investigate empirically the impact of South Africa’s foreign trade reforms over the last four decades on its energy consumption and CO2 emissions by taking into account not only the direct effect of trade on each, but also its indirect effect through income induced growth. Using co integration techniques we attempt to disentangle the long and short-run relationship between trade openness, income per capita and energy consumption and CO2 emissions in South Africa. The preliminary results of this study find support for a positive bi-directional relationship between output and CO2 emissions, as well as between trade openness and CO2. This evidence confirms the expectation that as the South African economy opens up to foreign trade and experiences growth in per capita income, the countries CO2 emissions will increase.

Keywords: trade openness, CO2 emissions, cointegration, South Africa

Procedia PDF Downloads 408
1184 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 127
1183 Greyscale: A Tree-Based Taxonomy for Grey Literature Published by Fisheries Agencies

Authors: Tatiana Tunon, Gottfried Pestal

Abstract:

Government agencies responsible for the management of fisheries resources publish many types of grey literature, and these materials are increasingly accessible to the public on agency websites. However, scope and quality vary considerably, and end-users need meta-data about the report series when deciding whether to use the information (e.g. apply the methods, include the results in a systematic review), or when prioritizing materials for archiving (e.g. library holdings, reference databases). A proposed taxonomy for these report series was developed based on a review of 41 report series from 6 government agencies in 4 countries (Canada, New Zealand, Scotland, and United States). Each report series was categorized according to multiple criteria describing peer-review process, content, and purpose. A robust classification tree was then fitted to these descriptions, and the resulting taxonomic groups were used to compare agency output from 4 countries using reports available in their online repositories.

Keywords: classification tree, fisheries, government, grey literature

Procedia PDF Downloads 283
1182 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea

Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal

Abstract:

Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.

Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism

Procedia PDF Downloads 266
1181 The Effect of Explicit Focus on Form on Second Language Learning Writing Performance

Authors: Keivan Seyyedi, Leila Esmaeilpour, Seyed Jamal Sadeghi

Abstract:

Investigating the effectiveness of explicit focus on form on the written performance of the EFL learners was the aim of this study. To provide empirical support for this study, sixty male English learners were selected and randomly assigned into two groups of explicit focus on form and meaning focused. Narrative writing was employed for data collection. To measure writing performance, participants were required to narrate a story. They were given 20 minutes to finish the task and were asked to write at least 150 words. The participants’ output was coded then analyzed utilizing Independent t-test for grammatical accuracy and fluency of learners’ performance. Results indicated that learners in explicit focus on form group appear to benefit from error correction and rule explanation as two pedagogical techniques of explicit focus on form with respect to accuracy, but regarding fluency they did not yield any significant differences compared to the participants of meaning-focused group.

Keywords: explicit focus on form, rule explanation, accuracy, fluency

Procedia PDF Downloads 511
1180 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 505
1179 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic

Procedia PDF Downloads 322
1178 A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults

Authors: Jude Inwumoh, Adam P. R. Taylor, Kosala Gunawardane

Abstract:

Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL).

Keywords: MMC-HVDC, DC faults, fault current limiters, control scheme

Procedia PDF Downloads 139
1177 A Novel Multi-Attribute Green Decision Making Model for Environmental Supply Chain Sustainability

Authors: Amirhossein Mahlouji

Abstract:

In current business market, the concept of integrating environmental sustainability into long-term as well as routine operations is becoming a prevailing trend. Therefore, several stimuli are helping organization to move toward environmental sustainability. The concept of green supply chain management can help provide a strategic framework to develop a customized sustainability roadmap for each organization. In this regard, this paper is mainly focused on presenting a strategic decision making framework that will assist top level decision-making issues. This decision-making tool is based on literature and practice in the area of environmentally conscious business practices. The goal of this paper will be on the components and parameters of green supply chain management and how they serve as a baseline for the decision framework. Later, the applicability of a multi-input multi-output decision model (MIMO), will be analyzed as the analytical network process, within the green supply chain.

Keywords: Multi-attribute, Green Supply Chain, Environmental, Sustainability

Procedia PDF Downloads 151
1176 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: MMR, TWR, OC, DOE, ANOVA, minitab

Procedia PDF Downloads 325
1175 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen

Authors: Bawadi M. A., Abbad J. A., Baras E. A.

Abstract:

This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.

Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model

Procedia PDF Downloads 83
1174 Meteorological Effect on Exergetic and Exergoeconomics Parameters of a Wind Turbine

Authors: Muhammad Abid

Abstract:

In this study, we performed the comparative exergetic and exergoeconomic analyses of a wind turbine over a period of twelve months from 1st January to 30th December 2011. The turbine is part of a wind-PV hybrid system with hydrogen storage, located on the roof of Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia. The rated power output from this turbine is 1.7 W with a rated wind speed of 12 m/s and cut-in/cut-out wind speeds of 3/14 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine exergy efficiencies and their relation with meteorological variables, such as temperature and density. We also calculate exergoeconomic parameter R ̇_ex and its dependence on the temperature, using the average values for twelve months of the year considered for comparison purposes. The exergy efficiency changes from 0.12 to 0.31 while the density varies between 1.31 and 1.2 kg/m3 for different temperature values. The R ̇_ex has minimum and maximum values of 0.02 and 0.81, respectively, while the temperature is in the range of 8-24°C for various wind velocity values.

Keywords: exergy, efficiency, renewable energy, wind energy, meteorological variables

Procedia PDF Downloads 240
1173 Location Choice of Firms in an Unequal Length Streets Model: Game Theory Approach as an Extension of the Spoke Model

Authors: Kiumars Shahbazi, Salah Salimian, Abdolrahim Hashemi Dizaj

Abstract:

Locating is one of the key elements in success and survival of industrial centers and has great impact on cost reduction of establishment and launching of various economic activities. In this study, streets with unequal length model have been used that is the classic extension of Spoke model; however with unlimited number of streets with uneven lengths. The results showed that the spoke model is a special case of streets with unequal length model. According to the results of this study, if the strategy of enterprises and firms is to select both price and location, there would be no balance in the game. Furthermore, increased length of streets leads to increased profit of enterprises and with increased number of streets, the enterprises choose locations that are far from center (the maximum differentiation), and the enterprises' output will decrease. Moreover, the enterprise production rate will incline toward zero when the number of streets goes to infinity, and complete competition outcome will be achieved.

Keywords: locating, Nash equilibrium, streets with unequal length model, streets with unequal length model

Procedia PDF Downloads 203
1172 Study and Design of Solar Inverter System

Authors: Khaled A. Madi, Abdulalhakim O. Naji, Hassouna A. Aalaoh, Elmahdi Eldeeb

Abstract:

Solar energy is one of the cleanest energy sources with no environmental impact. Due to rapid increase in industrial as well as domestic needs, solar energy becomes a good candidate for safe and easy to handle energy source, especially after it becomes available due to reduction of manufacturing price. The main part of the solar inverter system is the inverter where the DC is inverted to AC, where we try to minimize the loss of power to the minimum possible level by the use of microcontroller. In this work, a deep investigation is made experimentally as well as theoretically for a microcontroller based variable frequency power inverter. The microcontroller will provide the variable frequency Pulse Width Modulation (PWM) signal that will control the switching of the gate of the Insulating Gate Bipolar Transistor (IGBT) with less harmonics at the output of power inverter which can be fed to the public grid at high quality. The proposed work for single phase as well as three phases is also simulated using Matlab/Simulink where we found a good agreement between the simulated and the practical results, even though the experimental work were done in the laboratory of the academy.

Keywords: solar, inverter, PV, solar inverter system

Procedia PDF Downloads 462
1171 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition

Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon

Abstract:

This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.

Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery

Procedia PDF Downloads 349
1170 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System

Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany

Abstract:

The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.

Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling

Procedia PDF Downloads 149
1169 Good Marketing is an Important Factor for the Success of the Institution

Authors: Maamar Moumena

Abstract:

the Follower of the movement of international competition finds that the success of Japanese companies to break into global markets and win a competitive edge and meet the challenges of this competition, due primarily to the adoption of these companies to the modern concept of marketing, and possession of sophisticated marketing systems, with a focus on pricing policy. The institution's ability to produce goods and services be limited unless accompanied by an effective marketing effort. So the satisfaction of the consumer needs efficiently and effectiveness are unwarranted economic and social presence in the market, and ensure the continuity and achieve their goals, and this can only be achieved through marketing activity, where he activity facet which translates the output of the institution and its presence in the form of financial compensation, and that the inclusion of and marketing function within the functions of the institution and awarded each of gravity reflects the extent of their importance in the conduct of the future of the institution, and depending on excellence in performance and a good application of the basic concepts of marketing and primarily make the consumer focus of attention, so the pleasing of the consumer and earn his allegiance reflects the success of an organization.

Keywords: competition, marketing, institution, consumer

Procedia PDF Downloads 282
1168 Multi-Response Optimization of EDM for Ti-6Al-4V Using Taguchi-Grey Relational Analysis

Authors: Ritesh Joshi, Kishan Fuse, Gopal Zinzala, Nishit Nirmal

Abstract:

Ti-6Al-4V is a titanium alloy having high strength, low weight and corrosion resistant which is a required characteristic for a material to be used in aerospace industry. Titanium, being a hard alloy is difficult to the machine via conventional methods, so it is a call to use non-conventional processes. In present work, the effects on Ti-6Al-4V by drilling a hole of Ø 6 mm using copper (99%) electrode in Electric Discharge Machining (EDM) process is analyzed. Effect of various input parameters like peak current, pulse-on time and pulse-off time on output parameters viz material removal rate (MRR) and electrode wear rate (EWR) is studied. Multi-objective optimization technique Grey relational analysis is used for process optimization. Experiments are designed using an L9 orthogonal array. ANOVA is used for finding most contributing parameter followed by confirmation tests for validating the results. Improvement of 7.45% in gray relational grade is observed.

Keywords: ANOVA, electric discharge machining, grey relational analysis, Ti-6Al-4V

Procedia PDF Downloads 363
1167 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 149
1166 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 156
1165 Constraint-Directed Techniques for Transport Scheduling with Capacity Restrictions of Automotive Manufacturing Components

Authors: Martha Ndeley, John Ikome

Abstract:

In this paper, we expand the scope of constraint-directed techniques to deal with the case of transportation schedule with capacity restrictions where the scheduling problem includes alternative activities. That is, not only does the scheduling problem consist of determining when an activity is to be executed, but also determining which set of alternative activities is to be executed at all level of transportation from input to output. Such problems encompass both alternative resource problems and alternative process plan problems. We formulate a constraint-based representation of alternative activities to model problems containing such choices. We then extend existing constraint-directed scheduling heuristic commitment techniques and propagators to reason directly about the fact that an activity does not necessarily have to exist in a final transportation schedule without being completed. Tentative results show that an algorithm using a novel texture-based heuristic commitment technique propagators achieves the best overall performance of the techniques tested.

Keywords: production, transportation, scheduling, integrated

Procedia PDF Downloads 362
1164 Integration of Quality Function Deployment and Modular Function Deployment in Product Development

Authors: Naga Velamakuri, Jyothi K. Reddy

Abstract:

Quality must be designed into a product and not inspected has become the main motto of all the companies globally. Due to the rapidly increasing technology in the past few decades, the nature of demands from the consumers has become more sophisticated. To sustain this global revolution of innovation in production systems, companies have to take steps to accommodate this technology growth. In this process of understanding the customers' expectations, all the firms globally take steps to deliver a perfect output. Most of these techniques also concentrate on the consistent development and optimization of the product to exceed the expectations. Quality Function Deployment(QFD) and Modular Function Deployment(MFD) are such techniques which rely on the voice of the customer and help deliver the needs. In this paper, Quality Function Deployment and Modular Function Deployment techniques which help in converting the quantitative descriptions to qualitative outcomes are discussed. The area of interest would be to understand the scope of each of the techniques and the application range in product development when these are applied together to any problem. The research question would be mainly aimed at comprehending the limitations using modularity in product development.

Keywords: quality function deployment, modular function deployment, house of quality, methodology

Procedia PDF Downloads 328
1163 A Comparation Analysis of Islamic Bank Efficiency in the United Kingdom and Indonesia during Eurozone Crisis Using Data Envelopment Analysis

Authors: Nisful Laila, Fatin Fadhilah Hasib, Puji Sucia Sukmaningrum, Achsania Hendratmi

Abstract:

The purpose of this study is to determine and comparing the level of efficiency of Islamic Banks in Indonesia and United Kingdom during eurozone sovereign debt crisis. This study using a quantitative non-parametric approach with Data Envelopment Analysis (DEA) VRS assumption, and a statistical tool Mann-Whitney U-Test. The samples are 11 Islamic Banks in Indonesia and 4 Islamic Banks in England. This research used mediating approach. Input variable consists of total deposit, asset, and the cost of labour. Output variable consists of financing and profit/loss. This study shows that the efficiency of Islamic Bank in Indonesia and United Kingdom are varied and fluctuated during the observation period. There is no significant different the efficiency performance of Islamic Banks in Indonesia and United Kingdom.

Keywords: data envelopment analysis, efficiency, eurozone crisis, islamic bank

Procedia PDF Downloads 326
1162 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine

Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi

Abstract:

Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.

Keywords: non linear controller, robust, sliding mode, kinetic energy

Procedia PDF Downloads 499
1161 Automatic API Regression Analyzer and Executor

Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty

Abstract:

As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.

Keywords: automation impact regression, java doc, executor, analyzer, layers

Procedia PDF Downloads 488
1160 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 135
1159 Effects of Preparation Caused by Ischemic-Reperfusion along with Sodium Bicarbonate Supplementation on Submaximal Dynamic Force Production

Authors: Sara Nasiri Semnani, Alireza Ramzani

Abstract:

Background and Aims: Sodium bicarbonate is a supplementation that used to reduce fatigue and increase power output in short-term training. On the other hand, the Ischemic Reperfusion Preconditioning (IRPC) is an appropriate stimulus to increase the submaximal contractile response. Materials and methods: 9 female student-athletes in double-blind randomized crossover design were three mode, sodium bicarbonate + IRPC, sodium bicarbonate and placebo+ IRPC. Participants moved forward single arm dumbbell hand with a weight of 2 kg can be carried out most frequently. Results: The results showed that plasma lactate concentration and records of sodium bicarbonate + IRPC and sodium bicarbonate conditions were significantly different compared to placebo + IRPC (Respectively p=0.001, p=0/02). Conclusion: According to the research findings, bicarbonate supplementation in IRPC training condition increased force and delay fatigue in submaximal dynamic contraction.

Keywords: ischemic reperfusion, preconditioning, sodium bicarbonate, submaximal dynamic force

Procedia PDF Downloads 303
1158 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis

Authors: Iveta Řepková

Abstract:

The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.

Keywords: data envelopment analysis, efficiency, Slovak banking sector, window analysis

Procedia PDF Downloads 357