Search results for: mechanical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19851

Search results for: mechanical model

18891 The Onset of Ironing during Casing Expansion

Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers

Abstract:

Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.

Keywords: casing expansion, cement, formation, metal forming, plasticity, well design

Procedia PDF Downloads 180
18890 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model

Authors: Yoftahe Nigussie

Abstract:

This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.

Keywords: room, zone, space, thermal resistance

Procedia PDF Downloads 70
18889 A Comparison for Some Elastic and Mechanical Properties of Neptunium Dioxide

Authors: E. Güler, M. Güler

Abstract:

We report some elastic quantities of cubic fluorite type plutonium dioxide (PuO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic quantities were calculated during present research. After present calculations, we have compared our results with the existing theoretical data of literature. Our results are consistent with previous theoretical findings of the considered parameters of PuO2.

Keywords: PuO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 309
18888 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 150
18887 Designing Equivalent Model of Floating Gate Transistor

Authors: Birinderjit Singh Kalyan, Inderpreet Kaur, Balwinder Singh Sohi

Abstract:

In this paper, an equivalent model for floating gate transistor has been proposed. Using the floating gate voltage value, capacitive coupling coefficients has been found at different bias conditions. The amount of charge present on the gate has been then calculated using the transient models of hot electron programming and Fowler-Nordheim Tunnelling. The proposed model can be extended to the transient conditions as well. The SPICE equivalent model is designed and current-voltage characteristics and Transfer characteristics are comparatively analysed. The dc current-voltage characteristics, as well as dc transfer characteristics, have been plotted for an FGMOS with W/L=0.25μm/0.375μm, the inter-poly capacitance of 0.8fF for both programmed and erased states. The Comparative analysis has been made between the present model and capacitive coefficient coupling methods which were already available.

Keywords: FGMOS, floating gate transistor, capacitive coupling coefficient, SPICE model

Procedia PDF Downloads 545
18886 Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River

Authors: M. Jalali Azizpour, V.Tavvaf, E. Akhlaghi, H. Mohammadi Majd, A. Shirani, S. M. Moravvej, M. Kazemi, A. R. Aboudi Asl, A. Jaderi

Abstract:

The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies.

Keywords: FEM, stress, corrosion, bridge

Procedia PDF Downloads 475
18885 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility

Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu

Abstract:

The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.

Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education

Procedia PDF Downloads 313
18884 Observation and Experience of Using Mechanically Activated Fly Ash in Concrete

Authors: Rudolf Hela, Lenka Bodnarova

Abstract:

Paper focuses on experimental testing of possibilities of mechanical activation of fly ash and observation of influence of specific surface and granulometry on final properties of fresh and hardened concrete. Mechanical grinding prepared various fineness of fly ash, which was classed by specific surface in accordance with Blain and their granulometry was determined by means of laser granulometer. Then, sets of testing specimens were made from mix designs of identical composition with 25% or Portland cement CEM I 42.5 R replaced with fly ash with various specific surface and granulometry. Mix design with only Portland cement was used as reference. Mix designs were tested on consistency of fresh concrete and compressive strength after 7, 28, 60, and 90 days.

Keywords: concrete, fly ash, latent hydraulicity, mechanically activated fly ash

Procedia PDF Downloads 212
18883 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 355
18882 Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models

Authors: Mohammad Saber Rohi, Saghar Heidari

Abstract:

In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors.

Keywords: irrational exercise strategy, rationality parameter, regime-switching model, American option, finite element method, variational inequality

Procedia PDF Downloads 73
18881 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
18880 Study of Effective Parameters on Mechanical Properties of Toughened PP Compounds in Presence of Biofillers and Blowing Agents

Authors: Koosha Rezaei, Mehdi Moghri bidgoli, Mazyar Khakpour

Abstract:

Wood-plastic composites foam is one of the most used products were the industry today. In this study, composite foam polypropylene in the presence of different biofilers such as Spruce wood, wheat and rice husk as well as 3 different types toughening agents such as polyolefin elastomer, styrene butadiene styrene and styrene-ethylene butadiene styrene, and two types of cause blowing agents azodicarbonamide and sodium bicarbonate was prepared. For improving dispersion of biofilers, in the mixing process we used polypropylene coupling agent grafted with maleic anhydride. Due to the large number of variables, the statistical analysis of response surface to analyze the results of the impact test, tensile modulus and tensile strength and modeling were used. Co-rotating twine extruder was made composite melt mixing method and then to perform mechanical tests using injection molding, respectively.Images from electron microscopy showed cell sandwich structure in composite amply demonstrates.

Keywords: polypropylene, wood plastic composite foam, response surface analysis, morphology, mechanical properties

Procedia PDF Downloads 365
18879 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics

Authors: Jatin Gupta, Bishakh Bhattacharya

Abstract:

With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.

Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design

Procedia PDF Downloads 200
18878 Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes

Authors: Napoleana-Anna Chaliasou, Andrew Heath, Kevin Paine

Abstract:

Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.

Keywords: concrete recycling, geopolymer cement, fly ash, construction wastes

Procedia PDF Downloads 318
18877 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 187
18876 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering

Authors: Amani Alotaibi

Abstract:

3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.

Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization

Procedia PDF Downloads 6
18875 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 177
18874 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers

Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha

Abstract:

Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.

Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer

Procedia PDF Downloads 165
18873 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 353
18872 RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model

Authors: Jamil Ahmed

Abstract:

Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system.

Keywords: authorization, access control model, role based access control, attribute based access control

Procedia PDF Downloads 159
18871 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 353
18870 Efficient Bargaining versus Right to Manage in the Era of Liberalization

Authors: Panagiota Koliousi, Natasha Miaouli

Abstract:

We compare product and labour market liberalization under the two trade union bargaining models: the Right-to-Manage (RTM) model and the Efficient Bargaining (EB) model. The vehicle is a dynamic general equilibrium (DGE) model that incorporates two types of agents (capitalists and workers), imperfectly competitive product and labour markets. The model is solved numerically employing common parameter values and data from the euro area. A key message is that product market deregulation is favourable under any labour market structure while opting for labour market deregulation one should provide special attention to the structure of the labour market such as the bargaining system of unions. If the prevailing way of bargaining is the RTM model then restructuring both markets is beneficial for all agents.

Keywords: market structure, structural reforms, trade unions, unemployment

Procedia PDF Downloads 196
18869 Design and Construction of a Device to Facilitate the Stretching of a Plantiflexors Muscles in the Therapy of Rehabilitation for Patients with Spastic Hemiplegia

Authors: Nathalia Andrea Calderon Lesmes, Eduardo Barragan Parada, Diego Fernando Villegas Bermudez

Abstract:

Spasticity in the plantiflexor muscles as a product of stroke (CVA-Cerebrovascular accident) restricts the mobility and independence of the affected people. Commonly, physiotherapists are in charge of manually performing the rehabilitation therapy known as Sustained Mechanical Stretching, rotating the affected foot of the patient in the sagittal plane. However, this causes a physical wear on the professional because it is a fatiguing movement. In this article, a mechanical device is developed to implement this rehabilitation therapy more efficiently. The device consists of a worm-crown mechanism that is driven by a crank to gradually rotate a platform in the sagittal plane of the affected foot, in order to achieve dorsiflexion. The device has a range of sagittal rotation up to 150° and has velcro located on the footplate that secures the foot. The design of this device was modeled by using CAD software and was checked structurally with a general purpose finite element software to be sure that the device is safe for human use. As a measurement system, a goniometer is used in the lateral part of the device and load cells are used to measure the force in order to determine the opposing torque exerted by the muscle. Load cells sensitivity is 1.8 ± 0.002 and has a repeatability of 0.03. Validation of the effectiveness of the device is measured by reducing the opposition torque and increasing mobility for a given patient. In this way, with a more efficient therapy, an improvement in the recovery of the patient's mobility and therefore in their quality of life can be achieved.

Keywords: biomechanics, mechanical device, plantiflexor muscles, rehabilitation, spastic hemiplegia, sustained mechanical stretching

Procedia PDF Downloads 165
18868 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 169
18867 A Two Stage Stochastic Mathematical Model for the Tramp Ship Routing with Time Windows Problem

Authors: Amin Jamili

Abstract:

Nowadays, the majority of international trade in goods is carried by sea, and especially by ships deployed in the industrial and tramp segments. This paper addresses routing the tramp ships and determining the schedules including the arrival times to the ports, berthing times at the ports, and the departure times in an operational planning level. In the operational planning level, the weather can be almost exactly forecasted, however in some routes some uncertainties may remain. In this paper, the voyaging times between some of the ports are considered to be uncertain. To that end, a two-stage stochastic mathematical model is proposed. Moreover, a case study is tested with the presented model. The computational results show that this mathematical model is promising and can represent acceptable solutions.

Keywords: routing, scheduling, tram ships, two stage stochastic model, uncertainty

Procedia PDF Downloads 436
18866 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach

Authors: A. Zanj, F. He

Abstract:

In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.

Keywords: multi-physical domain, conduction model, port based modeling, dynamic interaction, physical modeling

Procedia PDF Downloads 273
18865 Characterization of Structural Elements Concrete Metal Fibre

Authors: Benaouda Hemza

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 455
18864 Enhancement of Indexing Model for Heterogeneous Multimedia Documents: User Profile Based Approach

Authors: Aicha Aggoune, Abdelkrim Bouramoul, Mohamed Khiereddine Kholladi

Abstract:

Recent research shows that user profile as important element can improve heterogeneous information retrieval with its content. In this context, we present our indexing model for heterogeneous multimedia documents. This model is based on the combination of user profile to the indexing process. The general idea of our proposal is to operate the common concepts between the representation of a document and the definition of a user through his profile. These two elements will be added as additional indexing entities to enrich the heterogeneous corpus documents indexes. We have developed IRONTO domain ontology allowing annotation of documents. We will present also the developed tool validating the proposed model.

Keywords: indexing model, user profile, multimedia document, heterogeneous of sources, ontology

Procedia PDF Downloads 348
18863 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers

Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan

Abstract:

PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of the concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to a decrease of diameter of nanofiber.

Keywords: amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile

Procedia PDF Downloads 309
18862 The Role of QX-314 and Capsaicin in Producing Long-Lasting Local Anesthesia in the Animal Model of Trigeminal Neuralgia

Authors: Ezzati Givi M., Ezzatigivi N., Eimani H.

Abstract:

Trigeminal Neuralgia (TN) consists of painful attacks often triggered with general activities, which cause impairment and disability. The first line of treatment consists of pharmacotherapy. However, the occurrence of many side-effects limits its application. Acute pain relief is crucial for titrating oral drugs and making time for neurosurgical intervention. This study aimed to examine the long-term anesthetic effect of QX-314 and capsaicin in trigeminal neuralgia using an animal model. TN was stimulated by surgical constriction of the infraorbital nerve in rats. After seven days, anesthesia infiltration was done, and the duration of mechanical allodynia was compared. Thirty-five male Wistar rats were randomly divided into seven groups as follows: control (normal saline); lidocaine (2%); QX314 (30 mM); lidocaine (2%)+QX314 (15 mM); lidocaine (2%)+QX314 (22 mM); lidocaine (2%)+QX314 (30 mM); and lidocaine (2%)+QX314 (30 mM) +capsaicin (1μg). QX314 in combination with lidocaine significantly increased the duration of anesthesia, which was dose-dependent. The combination of lidocaine+QX314+capsaicin could significantly increase the duration of anesthesia in trigeminal neuralgia. In the present study, we demonstrated that the combination of QX-314 with lidocaine and capsaicin produced a long-lasting, reversible local anesthesia and was superior to lidocaine alone in the fields of the duration of trigeminal neuropathic pain blockage.

Keywords: trigeminal neuralgia, capsaicin, lidocaine, long-lasting

Procedia PDF Downloads 114