Search results for: high sensitivity magnetic field sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28195

Search results for: high sensitivity magnetic field sensor

27235 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery

Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat

Abstract:

The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.

Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs

Procedia PDF Downloads 404
27234 Dynamic Contrast-Enhanced Breast MRI Examinations: Clinical Use and Technical Challenges

Authors: Janet Wing-Chong Wai, Alex Chiu-Wing Lee, Hailey Hoi-Ching Tsang, Jeffrey Chiu, Kwok-Wing Tang

Abstract:

Background: Mammography has limited sensitivity and specificity though it is the primary imaging technique for detection of early breast cancer. Ultrasound imaging and contrast-enhanced MRI are useful adjunct tools to mammography. The advantage of breast MRI is high sensitivity for invasive breast cancer. Therefore, indications for and use of breast magnetic resonance imaging have increased over the past decade. Objectives: 1. Cases demonstration on different indications for breast MR imaging. 2. To review of the common artifacts and pitfalls in breast MR imaging. Materials and Methods: This is a retrospective study including all patients underwent dynamic contrast-enhanced breast MRI examination in our centre, performed from Jan 2011 to Dec 2017. The clinical data and radiological images were retrieved from the EPR (electronic patient record), RIS (Radiology Information System) and PACS (Picture Archiving and Communication System). Results and Discussion: Cases including (1) Screening of the contralateral breast in patient with a new breast malignancy (2) Breast augmentation with free injection of unknown foreign materials (3) Finding of axillary adenopathy with an unknown site of primary malignancy (4) Neo-adjuvant chemotherapy: before, during, and after chemotherapy to evaluate treatment response and extent of residual disease prior to operation. Relevant images will be included and illustrated in the presentation. As with other types of MR imaging, there are different artifacts and pitfalls that can potentially limit interpretation of the images. Because of the coils and software specific to breast MR imaging, there are some other technical considerations that are unique to MR imaging of breast regions. Case demonstration images will be available in presentation. Conclusion: Breast MR imaging is a highly sensitive and reasonably specific method for the detection of breast cancer. Adherent to appropriate clinical indications and technical optimization are crucial for achieving satisfactory images for interpretation.

Keywords: MRI, breast, clinical, cancer

Procedia PDF Downloads 226
27233 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 347
27232 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks

Authors: Amira Zrelli, Tahar Ezzedine

Abstract:

Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.

Keywords: CTP, WSN, SHM, routing protocol

Procedia PDF Downloads 280
27231 Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films

Authors: R. Vidyasagar, G. L. S. Vilela, B. M. Guiraldelli, A. B. Henriques, J. Moodera

Abstract:

Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains.

Keywords: optical transitions, thin films, ferrimagnetic insulator, strains

Procedia PDF Downloads 32
27230 Enhancement of Environmental Security by the Application of Wireless Sensor Network in Nigeria

Authors: Ahmadu Girgiri, Lawan Gana Ali, Mamman M. Baba

Abstract:

Environmental security clearly articulates the perfections and developments of various communities around the world irrespective of the region, culture, religion or social inclination. Although, the present state of insecurity has become serious issue devastating the peace, unity, stability and progress of man and his physical environment particularly in developing countries. Recently, measure of security and it management in Nigeria has been a bottle-neck to the effectiveness and advancement of various sectors that include; business, education, social relations, politics and above all an economy. Several measures have been considered on mitigating environment insecurity such as surveillance, demarcation, security personnel empowerment and the likes, but still the issue remains disturbing. In this paper, we present the application of new technology that contributes to the improvement of security surveillance known as “Wireless Sensor Network (WSN)”. The system is new, smart and emerging technology that provides monitoring, detection and aggregation of information using sensor nodes and wireless network. WSN detects, monitors and stores information or activities in the deployed area such as schools, environment, business centers, public squares, industries, and outskirts and transmit to end users. This will reduce the cost of security funding and eases security surveillance depending on the nature and the requirement of the deployment.

Keywords: application, environment, insecurity, sensor, wireless sensor network

Procedia PDF Downloads 246
27229 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films

Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji

Abstract:

Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.

Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction

Procedia PDF Downloads 453
27228 Magnetorheological Elastomer Composites Obtained by Extrusion

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.

Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties

Procedia PDF Downloads 309
27227 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy

Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu

Abstract:

In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.

Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics

Procedia PDF Downloads 300
27226 Design and Simulation of 3-Transistor Active Pixel Sensor Using MATLAB Simulink

Authors: H. Alheeh, M. Alameri, A. Al Tarabsheh

Abstract:

There has been a growing interest in CMOS-based sensors technology in cameras as they afford low-power, small-size, and cost-effective imaging systems. This article describes the CMOS image sensor pixel categories and presents the design and the simulation of the 3-Transistor (3T) Active Pixel Sensor (APS) in MATLAB/Simulink tool. The analysis investigates the conversion of the light into an electrical signal for a single pixel sensing circuit, which consists of a photodiode and three NMOS transistors. The paper also proposes three modes for the pixel operation; reset, integration, and readout modes. The simulations of the electrical signals for each of the studied modes of operation show how the output electrical signals are correlated to the input light intensities. The charging/discharging speed for the photodiodes is also investigated. The output voltage for different light intensities, including in dark case, is calculated and showed its inverse proportionality with the light intensity.

Keywords: APS, CMOS image sensor, light intensities photodiode, simulation

Procedia PDF Downloads 164
27225 Cavitas Sensors into Human Cavities: Soft-Contact Lens and Mouthguard Sensors

Authors: Kohji Mitsubayashi, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

‘Cavitas sensors’ attached to human body cavities such as a contact lens type and a mouthguard (‘no implantable', ‘no wearable’) attracted attention as self-detachable devices for daily medicine. In this contribution, the soft contact lens glucose sensor for tear sugar monitoring will be introduced. And the mouthguard sensor with dental materials integrated with Bluetooth low energy (BLE) wireless module for real-time monitoring of saliva glucose would also be demonstrated. In the near future, those self-detachable cavitas sensors are expected to improve quality of life in view of the aging of society.

Keywords: cavitas sensor, biosensor, contact lens, mouthguard

Procedia PDF Downloads 277
27224 An Internet of Things Based Home Automation Based on Raspberry Pi and Node JS Server

Authors: Ahmed Khattab, Bassem Shetta

Abstract:

Today, there are many branches of technology, one of them is the internet of things. In this paper, it's focused specifically on automating all the home appliances through E-mail using Node JS server, the server side stores, and processes this data. The server side contains user interface and notification system functionalities which is operated by Raspberry Pi. It will present the security requirements for the smart home. In this application, the privilege of home control including special persons to use it, using the hardware appliances through mobiles and tablets is achieved. The proposed application delivers high quality of service, long lifetime, low maintenance, fast deployment, and low power requirements with low cost needed for development.

Keywords: Raspberry Pi, E-mail, home automation, temperature sensor, PIR sensor, actuators, relay

Procedia PDF Downloads 249
27223 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles

Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban

Abstract:

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272

Procedia PDF Downloads 322
27222 A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers

Authors: Hong Dinh Duong, Jong Il Rhee

Abstract:

In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM.

Keywords: nanofiber, QDs, ratiometric phosphate sensor, rhodamine 6G, sol-gel

Procedia PDF Downloads 396
27221 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 245
27220 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 145
27219 Microbial Quality Assessment of Indian White Shrimp, Penaeus Indicus from Southwest Bangladesh

Authors: Saima Sharif Nilla, Mahmudur Rahman Khan, Anisur Rahman Khan, Ghulam Mustafa1

Abstract:

The microbial quality of Indian white shrimp (Peneaus indicus) from Bagerhat, Khulna and Satkhira of southwest Bangladesh was assessed where the parameters varied with different sources and the quality was found to be poor for Satkhira shrimp samples. Shrimp samples in fresh condition were collected to perform the microbial assessment and 10 pathogenic isolates for antibiotic sensitivity test to 12 antibiotics. The results show that total bacterial count of all the samples were beyond the acceptable limit 105 cfu/g. In case of total coliform and E. coli density, no substantial difference (p<0.5) was found between the different shrimp samples from different districts and also high quantity of TC exceeding the limit (>102 cfu/g) proves the poor quality of shrimp. The FC abundance found in shrimps of Bagerhat and Satkhira was similar and significantly higher (p<0.5) than that of Khulna samples. No significant difference (p<0.5) was found among the high density of Salmonella-Shigella, Vibrio spp., and Staphylococcus spp. of the shrimp samples from the source places. In case of antibiotic sensitivity patterns, all of them were resistant to ampicillin, Penicillin and sensitive to kanamycin. Most of the isolates were frequently sensitive to ciprofloxacin and streptomycin in the sensitivity test. In case of nutritional composition, no significant difference (t-test, p<0.05) was found among protein, lipid, moisture and ash contents of shrimp samples. The findings prove that shrimp under this study was more or less contaminated and samples from Satkhira were highly privileged with food borne pathogens which confirmed the unhygienic condition of the shrimp farms as well as the presence of antibiotic resistance bacteria in shrimp fish supposed to threat food safety and deteriorate the export quality.

Keywords: food borne pathogens, satkhira, penaeus indicus, antibiotic sensitivity, southwest Bangladesh, food safety

Procedia PDF Downloads 694
27218 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: gas sensor, GSWR, micromechanical system, UWT, volatile emissions

Procedia PDF Downloads 474
27217 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 393
27216 Breaking Sensitivity Barriers: Perovskite Based Gas Sensors With Dimethylacetamide-Dimethyl Sulfoxide Solvent Mixture Strategy

Authors: Endalamaw Ewnu Kassa, Ade Kurniawan, Ya-Fen Wu, Sajal Biring

Abstract:

Perovskite-based gas sensors represent a highly promising materials within the realm of gas sensing technology, with a particular focus on detecting ammonia (NH3) due to its potential hazards. Our work conducted thorough comparison of various solvents, including dimethylformamide (DMF), DMF-dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and DMAC-DMSO, for the preparation of our perovskite solution (MAPbI3). Significantly, we achieved an exceptional response at 10 ppm of ammonia gas by employing a binary solvent mixture of DMAC-DMSO. In contrast to prior reports that relied on single solvents for MAPbI3 precursor preparation, our approach using mixed solvents demonstrated a marked improvement in gas sensing performance. We attained enhanced surface coverage, a reduction in pinhole occurrences, and precise control over grain size in our perovskite films through the careful selection and mixtures of appropriate solvents. This study shows a promising potential of employing binary and multi-solvent mixture strategies as a means to propel advancements in gas sensor technology, opening up new opportunities for practical applications in environmental monitoring and industrial safety.

Keywords: sensors, binary solvents, ammonia, sensitivity, grain size, pinholes, surface coverage

Procedia PDF Downloads 81
27215 Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System

Authors: Wiqar Hussain Shah

Abstract:

The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment.

Keywords: Rare-earth maganites, nano-structural materials, doping effects on electrical, magnetic properties, competing interactions

Procedia PDF Downloads 118
27214 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 44
27213 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G

Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo

Abstract:

Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.

Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS

Procedia PDF Downloads 248
27212 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor

Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng

Abstract:

Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.

Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging

Procedia PDF Downloads 90
27211 Association of Geomagnetic Storms with Coronal Mass Ejections during 1997-2012

Authors: O. P. Tripathi, P. L. Verma

Abstract:

Coronal Mass Ejections (CMEs) are mostly reached on Earth from 1 to 5 days from the Sun. As a consequence, slow CMEs are accelerated toward the speed of solar wind and fast CMEs are decelerated toward the speed of the solar wind. Coronal mass ejections (CMEs) are bursts of solar material i.e. clouds of plasma and magnetic fields that shoot off the sun’s surface. Other solar events include solar wind streams that come from the coronal holes on the Sun and solar energetic particles that are primarily released by CMEs. We have studied geomagnetic storms (DST ≤ - 80nT) during 1997-2012 with halo and partial halo coronal mass ejections and found that 73.28% CMEs (halo and partial halo coronal mass ejections) are associated with geomagnetic storms. The association rate of halo and partial halo coronal mass ejections are found 67.06% and 32.94% with geomagnetic storms respectively. We have also determined positive co-relation between magnitude of geomagnetic storms and speed of coronal mass ejection with correlation co-efficient 0.23.

Keywords: geomagnetic storms, coronal mass ejections (CMEs), disturbance storm time (Dst), interplanetary magnetic field (IMF)

Procedia PDF Downloads 495
27210 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 264
27209 Characterization of Fe Doped ZnO Synthesised by Sol-Gel and Combustion Routes

Authors: M. Ravindiran, P. Shankar

Abstract:

This paper deals with the comparison of two synthesis methods, namely, sol-gel, and combustion to prepare Fe doped ZnO nano material. Characterization results for structural, optical and magnetic properties were analyzed for the sol gel and combustion synthesis derived materials. Magnetic studies of the prepared compounds reveal that the combustion synthesis derived material has good magnetization of 50 emu/gm with a better hysteresis loop curve.

Keywords: DMS, combustion, ferromagnetic, synthesis methods

Procedia PDF Downloads 418
27208 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farmingas Web of Things to Cloud Interface Using PaaS

Authors: Sumaya Ismail, Aijaz Ahmad Reshi

Abstract:

The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to the Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them with web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular, the Representational State Transfer protocol (REST) was extended for the specific requirements of the application. The Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.

Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway

Procedia PDF Downloads 90
27207 Efficient Synthesis of Calix[4]Pyrroles Catalyzed by Powerful and Magnetically Recoverable Fe3O4 Nanoparticles

Authors: Renu Gautam, S. M. S. Chauhan

Abstract:

The magnetic Fe3O4 nanoparticles has been used as an efficient and facile acid catalyst for the synthesis of calix[4]pyrrole in moderate to excellent yields by the one pot condensation of different ketones and pyrrole. The catalyst was easily recovered using external magnet and reused over several cycles without losing its catalytic activity.

Keywords: calix[4]pyrrole, magnetic, Fe3O4 nanoparticles, catalysis

Procedia PDF Downloads 421
27206 Nano-Sensors: Search for New Features

Authors: I. Filikhin, B. Vlahovic

Abstract:

We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.

Keywords: double quantum dots, single electron levels, tunneling, electron localizations

Procedia PDF Downloads 493