Search results for: deep drawing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2861

Search results for: deep drawing

1901 “Moves” for Guiding Presentations in French

Authors: Nuchanat Handumrongkul, Suwaree Yordchim, Anantachai Aeka

Abstract:

Despite four years of study in the tourism industry, the Bachelor’s graduates cannot perform their jobs as experienced tour guides. This research aimed to develop French teaching and studying for Tourism with two main purposes: to analyze ‘Moves’ used in oral presentations at tourist attractions; and to study content in guiding presentations or 'Guide Speak'. The study employed audio recording of these presentations as an interview method in authentic situations, having four tour guides as respondents and information providers. The data was analyzed via moves and content analysis. The results found that there were eight moves used; namely: welcoming, introducing oneself, drawing someone’s attention, giving information, explaining, highlighting, persuading, and saying goodbye. In terms of content, the information being presented covered the outstanding characteristics of the places and well-integrated with other related content. The findings were used as guidelines for curriculum development; in particular, the core content and the presentation forming the basis for students to meet the standard requirements of the labor-market and professional schemes.

Keywords: moves, guiding presentation, french, tourism

Procedia PDF Downloads 232
1900 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 166
1899 Women's Religiosity as a Factor in the Persistence of Religious Traditions: Kazakhstan, the XX Century

Authors: G. Nadirova, B. Aktaulova

Abstract:

The main question of the research is- how did the Kazakhs manage to keep their religious thinking in the period of active propaganda of Soviet atheism, for seventy years of struggle against religion with the involvement of the scientific worldview as the primary means of proving the absence of the divine nature and materiality of the world? Our hypothesis is that In case of Kazakhstan the conservative female religious consciousness seems to have been a factor that helped to preserve the “everyday” religiousness of Kazakhs, which was far from deep theological contents of Islam, but able to revive in a short time after the decennia of proclaimed atheism.

Keywords: woman, religious thinking, Kazakhstan, soviet ideology, rituals, family

Procedia PDF Downloads 214
1898 Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation

Authors: Youtao Gao, Bingyu Jin, Tanran Zhao, Bo Xu

Abstract:

The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent.

Keywords: extended Kalman filter, autonomous orbit determination, unscented Kalman filter, navigation constellation

Procedia PDF Downloads 285
1897 Surgical Treatment of Glaucoma – Literature and Video Review of Blebs, Tubes, and Micro-Invasive Glaucoma Surgeries (MIGS)

Authors: Ana Miguel

Abstract:

Purpose: Glaucoma is the second cause of worldwide blindness and the first cause of irreversible blindness. Trabeculectomy, the standard glaucoma surgery, has a success rate between 36.0% and 98.0% at three years and a high complication rate, leading to the development of different surgeries, micro-invasive glaucoma surgeries (MIGS). MIGS devices are diverse and have various indications, risks, and effectiveness. We intended to review MIGS’ surgical techniques, indications, contra-indications, and IOP effect. Methods: We performed a literature review of MIGS to differentiate the devices and their reported effectiveness compared to traditional surgery (tubes and blebs). We also conducted a video review of the last 1000 glaucoma surgeries of the author (including MIGS, but also trabeculectomy, deep sclerectomy, and tubes of Ahmed and Baerveldt) performed at glaucoma and advanced anterior segment fellowship in Canada and France, to describe preferred surgical techniques for each. Results: We present the videos with surgical techniques and pearls for each surgery. Glaucoma surgeries included: 1- bleb surgery (namely trabeculectomy, with releasable sutures or with slip knots, deep sclerectomy, Ahmed valve, Baerveldt tube), 2- MIGS with bleb, also known as MIBS (including XEN 45, XEN 63, and Preserflo), 3- MIGS increasing supra-choroidal flow (iStar), 4-MIGS increasing trabecular flow (iStent, gonioscopy-assisted transluminal trabeculotomy - GATT, goniotomy, excimer laser trabeculostomy -ELT), and 5-MIGS decreasing aqueous humor production (endocyclophotocoagulation, ECP). There was also needling (ab interno and ab externo) performed at the operating room and irido-zonulo-hyaloïdectomy (IZHV). Each technique had different indications and contra-indications. Conclusion: MIGS are valuable in glaucoma surgery, such as traditional surgery with trabeculectomy and tubes. All glaucoma surgery can be combined with phacoemulsification (there may be a synergistic effect on MIGS + cataract surgery). In addition, some MIGS may be combined for further intraocular pressure lowering effect (for example, iStents with goniotomy and ECP). A good surgical technique and postoperative management are fundamental to increasing success and good practice in all glaucoma surgery.

Keywords: glaucoma, migs, surgery, video, review

Procedia PDF Downloads 83
1896 Existential Feeling in Contemporary Chinese Novels: The Case of Yan Lianke

Authors: Thuy Hanh Nguyen Thi

Abstract:

Since 1940, existentialism has penetrated into China and continued to profoundly influence contemporary Chinese literature. By the method of deep reading and text analysis, this article analyzes the existential feeling in Yan Lianke’s novels through various aspects: the Sisyphus senses, the narrative rationalization and the viewpoint of the dead. In addition to pointing out the characteristics of the existential sensation in the writer’s novels, the analysis of the article also provides an insight into the nature and depth of contemporary Chinese society.

Keywords: Yan Lianke, existentialism, the existential feeling, contemporary Chinese literature

Procedia PDF Downloads 141
1895 Deep Q-Network for Navigation in Gazebo Simulator

Authors: Xabier Olaz Moratinos

Abstract:

Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.

Keywords: machine learning, DQN, Gazebo, navigation

Procedia PDF Downloads 77
1894 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 80
1893 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 103
1892 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique

Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele

Abstract:

The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.

Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties

Procedia PDF Downloads 120
1891 Maintaining a Motivated Workforce in the Malaysian Armed Forces

Authors: Gerard Lawrence

Abstract:

This paper gives an in-depth discussion on Motivation in the Malaysian Armed Forces; highlighting it as a powerful and important tool upon which the well-being of an entire (or any) organization rests. It starts with the literal definition of the word and then the psychological aspects of it detailing the intricate mechanics and fundamentals in order to accurately and systematically harness it to create a motivated workforce. It then describes the types of motivation; positive and negative, its many facets and manifestation, clearly identifying each one point by point as well as drawing examples. The paper also deals with certain controversial practices like favoritism; nepotism and provides examples of military motivation both in historic and contemporary context. It strips the current system (and its flaws) to build, nurture and maintain motivation in the future. It shows how “past practice” may not necessarily be “best practice”, by providing the building blocks necessary to move forward and cautions on the inter-relation and differences between morale and motivation. As a conclusion the paper coins a theory of working in shifts for the military and urges careful research and planning as to IF this can raise if not maintain motivation in the new era.

Keywords: armed forces, Malaysia, motivation, military psychology

Procedia PDF Downloads 435
1890 Reframing Service Sector Privatisation Quality Conception with the Theory of Deferred Action

Authors: Mukunda Bastola, Frank Nyame-Asiamah

Abstract:

Economics explanation for privatisation, drawing on neo-liberal market structures and technical efficiency principles has failed to address social imbalance and, distribute the efficiency benefits accrued from privatisation equitably among service users and different classes of people in society. Stakeholders’ interest, which cover ethical values and changing human needs are ignored due to shareholders’ profit maximising strategy with higher service charges. The consequence of these is that, the existing justifications for privatisation have fallen short of customer quality expectations because the underlying plan-based models fail to account for the nuances of customer expectations. We draw on the theory of deferred action to develop a context-based privatisation model, the deferred-based privatisation model, to explain how privatisation could be strategised for the emergent reality of the wider stakeholders’ interests and everyday quality demands of customers which are unpredictable.

Keywords: privatisation, service quality, shareholders, deferred action, deferred-based privatisation model

Procedia PDF Downloads 274
1889 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.

Keywords: authentication, gesture-based passwords, shoulder-surfing attacks, usability

Procedia PDF Downloads 139
1888 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: the linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure

Procedia PDF Downloads 298
1887 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
1886 Apple in the Big Tech Oligopoly: An Analysis of Disruptive Innovation Trends and Their Influence on the Capacity of Conserving a Positive Social Impact as Primary Purpose

Authors: E. Loffi Borghese

Abstract:

In this comprehensive study, we delve into the intricate dynamics of the big tech oligopoly, focusing particularly on Apple as a case study. The core objective is to scrutinize the evolving relationship between a firm's commitment to positive social impact as its primary purpose and its resilience in the face of disruptive innovations within the big tech market. Our exploration begins with a theoretical framework, emphasizing the significance of distinguishing between corporate social responsibility and social impact as a primary purpose. Drawing on insights from Drumwright and Bartkus and Glassman, we underscore the transformative potential when a firm aligns its core business with a social mission, transcending mere side activities. Examining successful firms, such as Apple, we adopt Sinek's perspective on inspirational leadership and the "golden circle." This framework sheds light on why some organizations, like Apple, succeed in making positive social impact their primary purpose. Apple's early-stage life cycle is dissected, revealing a profound commitment to challenging the status quo and promoting simpler alternatives that resonate with its users' lives. The study then navigates through industry life cycles, drawing on Klepper's stages and Christensen's disruptive innovations. Apple's dominance in the big tech oligopoly is contrasted with companies like Harley Davidson and Polaroid, illustrating the consequences of failing to adapt to disruptive innovations. The data and methods employed encompass a qualitative approach, leveraging sources like ECB, Forbes, World in Data, and scientific articles. A secondary data analysis probes Apple's market evolution within the big tech oligopoly, emphasizing the shifts in market context and innovation trends that demand strategic adaptations. The subsequent sections scrutinize Apple's present innovation strategies, highlighting its diversified product portfolio and intensified focus on big data. We examine the implications of these shifts on Apple's capacity to maintain positive social impact as its primary purpose, pondering potential consequences on its brand perception. The study culminates in a reflection on the broader implications of the big tech oligopoly's dominance. It contemplates the diminishing competitiveness in the market and the potential sidelining of positive social impact as a competitive advantage. The expansion of tech firms into diverse sectors raises concerns about negative societal impacts, prompting a call for increased regulatory attention and awareness. In conclusion, this research serves as a catalyst for heightened awareness and discussion on the intricate interplay between firms' social impact goals, disruptive innovations, and the broader societal implications within the evolving landscape of the big tech oligopoly. Despite limitations, this study aims to stimulate further research, urging a conscious and responsible approach to shaping the future economic system.

Keywords: innovation trends, market dynamics, social impact, tech oligopoly

Procedia PDF Downloads 74
1885 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems

Authors: Jiradeach Kalayaruan, Tosawat Seetawan

Abstract:

This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.

Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy

Procedia PDF Downloads 345
1884 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners

Authors: Michael McMahon

Abstract:

The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.

Keywords: multimedia learning, e-learning, design for learning, ICT

Procedia PDF Downloads 103
1883 BERT-Based Chinese Coreference Resolution

Authors: Li Xiaoge, Wang Chaodong

Abstract:

We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.

Keywords: BERT, coreference resolution, deep learning, nature language processing

Procedia PDF Downloads 216
1882 Unmasking Virtual Empathy: A Philosophical Examination of AI-Mediated Emotional Practices in Healthcare

Authors: Eliana Bergamin

Abstract:

This philosophical inquiry, influenced by the seminal works of Annemarie Mol and Jeannette Pols, critically examines the transformative impact of artificial intelligence (AI) on emotional caregiving practices within virtual healthcare. Rooted in the traditions of philosophy of care, philosophy of emotions, and applied philosophy, this study seeks to unravel nuanced shifts in the moral and emotional fabric of healthcare mediated by AI-powered technologies. Departing from traditional empirical studies, the approach embraces the foundational principles of care ethics and phenomenology, offering a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. At its core, this research addresses the introduction of AI-powered technologies mediating emotional and care practices in the healthcare sector. By drawing on Mol and Pols' insights, the study offers a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. Anchored in ethnographic research within a pioneering private healthcare company in the Netherlands, this critical philosophical inquiry provides a unique lens into the dynamics of AI-mediated emotional practices. The study employs in-depth, semi-structured interviews with virtual caregivers and care receivers alongside ongoing ethnographic observations spanning approximately two and a half months. Delving into the lived experiences of those at the forefront of this technological evolution, the research aims to unravel subtle shifts in the emotional and moral landscape of healthcare, critically examining the implications of AI in reshaping the philosophy of care and human connection in virtual healthcare. Inspired by Mol and Pols' relational approach, the study prioritizes the lived experiences of individuals within the virtual healthcare landscape, offering a deeper understanding of the intertwining of technology, emotions, and the philosophy of care. In the realm of philosophy of care, the research elucidates how virtual tools, particularly those driven by AI, mediate emotions such as empathy, sympathy, and compassion—the bedrock of caregiving. Focusing on emotional nuances, the study contributes to the broader discourse on the ethics of care in the context of technological mediation. In the philosophy of emotions, the investigation examines how the introduction of AI alters the phenomenology of emotional experiences in caregiving. Exploring the interplay between human emotions and machine-mediated interactions, the nuanced analysis discerns implications for both caregivers and caretakers, contributing to the evolving understanding of emotional practices in a technologically mediated healthcare environment. Within applied philosophy, the study transcends empirical observations, positioning itself as a reflective exploration of the moral implications of AI in healthcare. The findings are intended to inform ethical considerations and policy formulations, bridging the gap between technological advancements and the enduring values of caregiving. In conclusion, this focused philosophical inquiry aims to provide a foundational understanding of the evolving landscape of virtual healthcare, drawing on the works of Mol and Pols to illuminate the essence of human connection, care, and empathy amid technological advancements.

Keywords: applied philosophy, artificial intelligence, healthcare, philosophy of care, philosophy of emotions

Procedia PDF Downloads 59
1881 Fatigue Analysis of Spread Mooring Line

Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh

Abstract:

Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.

Keywords: mooring system, fatigue analysis, time domain, non-linear dynamic characteristics

Procedia PDF Downloads 334
1880 Enacting Educational Technology Affordances as Mechanisms Responsible for Gaining Epistemological Access: A Case of Underprivileged Students at Higher Institutions in Northern Nigeria

Authors: Bukhari Badamasi, Chidi G. Ononiwu

Abstract:

Globally, educational technology (EdTech) has become a known catalyst for gaining access to education, job creation, and national development of a nation. Howbeit, it is common understanding that higher institutions continue to deploy digital technologies, to help provide access to education, but in most case, it is somehow institutional access not epistemological access especially in sub Saharan African higher institutions. Some scholars, however, lament the fact that studies on educational technology affordances are mostly fragmented because they focus on specific theme or sub aspect of access (i.e., institutional access). Thus, drawing from the Archer Morphogenetic approach, and Gibson Affordance theory, and applying critical realist based Danermark model for explanatory research, the study seeks to conduct a realist case study on underprivileged students in Higher institutions on how they gain epistemological access by enacting educational technology (EdTech) affordances.

Keywords: affordance, epistemological access, educational technology, underprivileged students

Procedia PDF Downloads 84
1879 ANAC-id - Facial Recognition to Detect Fraud

Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira

Abstract:

This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.

Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision

Procedia PDF Downloads 156
1878 Processes of Identities Formation and Transformation among Professional Skilled Mexican Migrants in the United States

Authors: M. Laura Vazquez Maggio, Lilia Dominguez Villalobos, Jan Luka Frey

Abstract:

This paper contributes to the understanding of the dynamic and the relational nature of identities formation among skilled middle-class migrants. Following the idea that identities are never singular, multifaceted and have a necessarily processual character, the authors specifically analyze three dimensions of the identity of qualified Mexican migrants in the US and the interplay between them. Drawing on semi-structured interviews with skilled Mexican middle-class migrants in the US, the paper explores how skilled Mexican migrants preserve their ethno-national identity (their ‘Mexicanness’) in reaction to a hostile socio-political reception context in the US. It further shows how these migrants recreate their class identity and show tendencies to distance themselves from what they perceive as lower-class Mexican migrants and the dominant popular Mexican and Latin-American cultural expressions. In a final step, it examines how the lived experience of migration itself impacts the migrants’ identities, their concept of self and feelings/modes of being and belonging.

Keywords: ethno-national identity, middle class identity, middle-class migration, migrants’ identity, skilled migration

Procedia PDF Downloads 143
1877 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
1876 The Impact of Transformational Leadership on Individual Entrepreneurial Behavior and the Moderating Role of Hierarchy

Authors: Patrick Guggenberger

Abstract:

Extant literature has highlighted the importance of individual employees in the entrepreneurial process, as they are those that come up with novel ideas and promote their implementation throughout the organization. However, research on antecedents of individual entrepreneurial behavior (IEB) is very limited. The present study takes an initial step to investigate the interplay between transformational leader behaviors of direct supervisors and employees’ ability and willingness to act entrepreneurial and sheds light on the moderating role of an individual’s hierarchical level. A theoretically derived research model is empirically tested, drawing on survey data of 450 individuals working in medium- and large-sized corporations in two countries. Findings indicate that various transformational leader behaviors have a strong positive impact on IEB, while the ability of direct supervisors to influence their followers’ entrepreneurial behavior depends strongly on their own hierarchical level. The study reveals that transformational leadership has most impact at lower hierarchical levels, where employees’ motivation to act entrepreneurial is the lowest.

Keywords: corporate entrepreneurship, hierarchy, individual entrepreneurial behavior, transformational leadership

Procedia PDF Downloads 352
1875 Automatic Checkpoint System Using Face and Card Information

Authors: Kriddikorn Kaewwongsri, Nikom Suvonvorn

Abstract:

In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.

Keywords: face comparison, card recognition, OCR, checkpoint system, authentication

Procedia PDF Downloads 321
1874 Methodology of Islamic Economics: Scope and Prospects

Authors: Ahmad Abdulkadir Ibrahim

Abstract:

Observation of the methodology of Islamic economics laid down for the methods and instruments of analysis and even some of its basic assumptions in the modern world; is a matter that is of paramount importance. There is a need to examine the implications of different suggested definitions of Islamic economics, exploring its scope and attempting to outline its methodology. This paper attempts to deal with the definition of Islamic economics, its methodology, and its scope. It will outline the main methodological problem by addressing the question of whether Islamic economics calls for a methodology of its own or as an expanded economics. It also aims at drawing the attention of economists in the modern world to the obligation and consideration of the methodology of Islamic economics. The methodology adopted in this research is library research through the consultation of relevant literature, which focuses on the thematic study of the subject matter. This is followed by an analysis and discussion of the contents of the materials used. It is concluded that there is a certain degree of inconsistency in the way assumptions are incorporated that perhaps are alien to Islamic economics. The paper also observed that there is a difference between Islamic economists and other (conventional) economists in the profession. An important conclusion is that Islamic economists need to rethink what economics is all about and whether we really have to create an alternative to economics in the form of Islamic economics or simply have an Islamic perspective of the same discipline.

Keywords: methodology, Islamic economics, conventional economics, Muslim economists, framework, knowledge

Procedia PDF Downloads 128
1873 Analysis of Environmental Activism in High Schools in District Peshawar

Authors: Hafiz M. Inamullah, Altaf Ullah

Abstract:

Environmental degradation is a serious issue that has adverse impacts on the human population locally, regionally, and globally. There is a dire need to adopt an environmentally friendly lifestyle to minimize further environmental degradation. One of the mediums through which environmentally friendly attitudes and behavior may be inculcated is through school education. The purpose of this study was to investigate environmental activities organized in High Schools of District Peshawar. The population for this study was comprised of 77 Headmasters of the High Schools in District Peshawar. A sample of 65 Headmasters was selected randomly from the above-mentioned population. One questionnaire was developed from the relevant literature for the Headmasters and was self-administered by the researcher. The collected data was entered into Excel and was analyzed and interpreted through SPSS 20 using the frequencies and percentages, and the Chi-square test was applied. The results indicated that most high schools had never organized environmental activities for secondary-level students. It was suggested that the high schools might organize various environmental activities such as plantations, park visits, debate competitions, environmental clubs, and drawing competitions.

Keywords: proinvirmenlaism, Khyber Pakhtunkhwa, secondary level, Peshawar

Procedia PDF Downloads 86
1872 Convolutional Neural Networks Architecture Analysis for Image Captioning

Authors: Jun Seung Woo, Shin Dong Ho

Abstract:

The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.

Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3

Procedia PDF Downloads 133