Search results for: computational brain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3171

Search results for: computational brain

2211 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 143
2210 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
2209 A Prospective Neurosurgical Registry Evaluating the Clinical Care of Traumatic Brain Injury Patients Presenting to Mulago National Referral Hospital in Uganda

Authors: Benjamin J. Kuo, Silvia D. Vaca, Joao Ricardo Nickenig Vissoci, Catherine A. Staton, Linda Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Lydia Nanjula, Christine Muhumuza, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: Traumatic Brain Injury (TBI) is disproportionally concentrated in low- and middle-income countries (LMICs), with the odds of dying from TBI in Uganda more than 4 times higher than in high income countries (HICs). The disparities in the injury incidence and outcome between LMICs and resource-rich settings have led to increased health outcomes research for TBIs and their associated risk factors in LMICs. While there have been increasing TBI studies in LMICs over the last decade, there is still a need for more robust prospective registries. In Uganda, a trauma registry implemented in 2004 at the Mulago National Referral Hospital (MNRH) showed that RTI is the major contributor (60%) of overall mortality in the casualty department. While the prior registry provides information on injury incidence and burden, it’s limited in scope and doesn’t follow patients longitudinally throughout their hospital stay nor does it focus specifically on TBIs. And although these retrospective analyses are helpful for benchmarking TBI outcomes, they make it hard to identify specific quality improvement initiatives. The relationship among epidemiology, patient risk factors, clinical care, and TBI outcomes are still relatively unknown at MNRH. Objective: The objectives of this study are to describe the processes of care and determine risk factors predictive of poor outcomes for TBI patients presenting to a single tertiary hospital in Uganda. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Research Electronic Data Capture (REDCap) was used to systematically collect variables spanning 8 categories. Univariate and multivariate analysis were conducted to determine significant predictors of mortality. Results: 563 TBI patients were enrolled from 1 June – 30 November 2016. 102 patients (18%) received surgery, 29 patients (5.1%) intended for surgery failed to receive it, and 251 patients (45%) received non-operative management. Overall mortality was 9.6%, which ranged from 4.7% for mild and moderate TBI to 55% for severe TBI patients with GCS 3-5. Within each TBI severity category, mortality differed by management pathway. Variables predictive of mortality were TBI severity, more than one intracranial bleed, failure to receive surgery, high dependency unit admission, ventilator support outside of surgery, and hospital arrival delayed by more than 4 hours. Conclusions: The overall mortality rate of 9.6% in Uganda for TBI is high, and likely underestimates the true TBI mortality. Furthermore, the wide-ranging mortality (3-82%), high ICU fatality, and negative impact of care delays suggest shortcomings with the current triaging practices. Lack of surgical intervention when needed was highly predictive of mortality in TBI patients. Further research into the determinants of surgical interventions, quality of step-up care, and prolonged care delays are needed to better understand the complex interplay of variables that affect patient outcome. These insights guide the development of future interventions and resource allocation to improve patient outcomes.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury

Procedia PDF Downloads 237
2208 E-Survey: Cancer Treatment with Proton Beam Therapy in USA

Authors: Auj-E Taqaddas

Abstract:

The use of proton beam therapy is increasing globally. It seems to offer dosimetric advantages, especially in paediatric central nervous system (CNS) and brain tumours. A short E-survey was conducted to assess the clinical, technical, and educational resources and strategies employed in the state of the art proton beam therapy (PBT) centres in the USA to determine the current status of proton beam therapy. The study also aimed at finding out which PBT skills are in demand as well as what improvements are needed to ensure efficient treatment planning, delivery, and dosimetry. The study resulted in identifying areas for future research and development and in identifying cancers for which PBT is most suitable compared to other modalities to facilitate the implementation and use of PBT in clinical settings for cancer treatment.

Keywords: cancer, intensity modulated proton therapy, proton beam therapy, single field uniform scanning

Procedia PDF Downloads 206
2207 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 166
2206 Iterative Dynamic Programming for 4D Flight Trajectory Optimization

Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho

Abstract:

4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.

Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization

Procedia PDF Downloads 163
2205 Evaluation and Assessment of Bioinformatics Methods and Their Applications

Authors: Fatemeh Nokhodchi Bonab

Abstract:

Bioinformatics, in its broad sense, involves application of computer processes to solve biological problems. A wide range of computational tools are needed to effectively and efficiently process large amounts of data being generated as a result of recent technological innovations in biology and medicine. A number of computational tools have been developed or adapted to deal with the experimental riches of complex and multivariate data and transition from data collection to information or knowledge. These bioinformatics tools are being evaluated and applied in various medical areas including early detection, risk assessment, classification, and prognosis of cancer. The goal of these efforts is to develop and identify bioinformatics methods with optimal sensitivity, specificity, and predictive capabilities. The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems.

Keywords: methods, applications, transcriptional regulatory systems, techniques

Procedia PDF Downloads 128
2204 Coarse Grid Computational Fluid Dynamics Fire Simulations

Authors: Wolfram Jahn, Jose Manuel Munita

Abstract:

While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.

Keywords: CFD, fire simulations, emergency response, forecast

Procedia PDF Downloads 320
2203 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe

Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya

Abstract:

Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.

Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow

Procedia PDF Downloads 77
2202 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser

Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt

Abstract:

This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.

Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet

Procedia PDF Downloads 215
2201 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 263
2200 Study of Wake Dynamics for a Rim-Driven Thruster Based on Numerical Method

Authors: Bao Liu, Maarten Vanierschot, Frank Buysschaert

Abstract:

The present work examines the wake dynamics of a rim-driven thruster (RDT) with Computational Fluid Dynamics (CFD). Unsteady Reynolds-averaged Navier-Stokes (URANS) equations were solved in the commercial solver ANSYS Fluent in combination with the SST k-ω turbulence model. The application of the moving reference frame (MRF) and sliding mesh (SM) approach to handling the rotational movement of the propeller were compared in the transient simulations. Validation and verification of the numerical model was performed to ensure numerical accuracy. Two representative scenarios were considered, i.e., the bollard condition (J=0) and a very light loading condition(J=0.7), respectively. From the results, it’s confirmed that compared to the SM method, the MRF method is not suitable for resolving the unsteady flow features as it only gives the general mean flow but smooths out lots of characteristic details in the flow field. By evaluating the simulation results with the SM technique, the instantaneous wake flow field under both conditions is presented and analyzed, most notably the helical vortex structure. It’s observed from the results that the tip vortices, blade shed vortices, and hub vortices are present in the wake flow field and convect downstream in a highly non-linear way. The shear layer vortices shedding from the duct displayed a strong interaction with the distorted tip vortices in an irregularmanner.

Keywords: computational fluid dynamics, rim-driven thruster, sliding mesh, wake dynamics

Procedia PDF Downloads 263
2199 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 190
2198 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency

Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San

Abstract:

A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.

Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency

Procedia PDF Downloads 359
2197 Numerical Investigation of the Flow Around Multi-Element Airfoils

Authors: Taylan Ozturk, Osama Maklad

Abstract:

This study examines the aerodynamic and flow properties of a multi-element airfoil using computational fluid dynamics (CFD) research. This computational analysis aims to optimize slat design concerning lift-drag coefficients and to determine the ideal gap size between the main airfoil and the front flap. It examines the influence of varying angles of attack and the effects of varied Reynolds numbers. A NACA 2412 airfoil, equipped with custom-designed front and rear flaps, was modeled in SolidWorks and simulated in ANSYS Fluent utilizing the k-ω SST turbulence model. This study quantifies lift and drag coefficients, turbulent kinetic energy, and vorticity magnitude across various configurations. The results clearly indicate that the slat-optimized design geometry featuring a 4 mm gap provides the best performance regarding both lift and drag, with maximum efficiency achieved at a 4-degree angle of attack. Furthermore, the results indicate the initiation of stall conditions beyond 20 degrees and demonstrate how an increase in Reynolds numbers influences flow separation and turbulence patterns. In addition, the maximum L/D ratio which is 36.18 achieved. These findings enhance the comprehension of multi-element airfoil behavior, directly impacting aircraft design and operation, particularly in high-lift situations.

Keywords: multi-element airfoil, CFD simulation, aerodynamic characteristics, Reynolds number analysis

Procedia PDF Downloads 23
2196 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 135
2195 Neuroplasticity: A Fresh Begining for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms

Procedia PDF Downloads 497
2194 Neuroplasticity: A Fresh Beginning for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms

Procedia PDF Downloads 454
2193 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects

Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid

Abstract:

Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.

Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE

Procedia PDF Downloads 361
2192 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 177
2191 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 264
2190 Healthy Architecture Applied to Inclusive Design for People with Cognitive Disabilities

Authors: Santiago Quesada-García, María Lozano-Gómez, Pablo Valero-Flores

Abstract:

The recent digital revolution, together with modern technologies, is changing the environment and the way people interact with inhabited space. However, in society, the elderly are a very broad and varied group that presents serious difficulties in understanding these modern technologies. Outpatients with cognitive disabilities, such as those suffering from Alzheimer's disease (AD), are distinguished within this cluster. This population group is in constant growth, and they have specific requirements for their inhabited space. According to architecture, which is one of the health humanities, environments are designed to promote well-being and improve the quality of life for all. Buildings, as well as the tools and technologies integrated into them, must be accessible, inclusive, and foster health. In this new digital paradigm, artificial intelligence (AI) appears as an innovative resource to help this population group improve their autonomy and quality of life. Some experiences and solutions, such as those that interact with users through chatbots and voicebots, show the potential of AI in its practical application. In the design of healthy spaces, the integration of AI in architecture will allow the living environment to become a kind of 'exo-brain' that can make up for certain cognitive deficiencies in this population. The objective of this paper is to address, from the discipline of neuroarchitecture, how modern technologies can be integrated into everyday environments and be an accessible resource for people with cognitive disabilities. For this, the methodology has a mixed structure. On the one hand, from an empirical point of view, the research carries out a review of the existing literature about the applications of AI to build space, following the critical review foundations. As a unconventional architectural research, an experimental analysis is proposed based on people with AD as a resource of data to study how the environment in which they live influences their regular activities. The results presented in this communication are part of the progress achieved in the competitive R&D&I project ALZARQ (PID2020-115790RB-I00). These outcomes are aimed at the specific needs of people with cognitive disabilities, especially those with AD, since, due to the comfort and wellness that the solutions entail, they can also be extrapolated to the whole society. As a provisional conclusion, it can be stated that, in the immediate future, AI will be an essential element in the design and construction of healthy new environments. The discipline of architecture has the compositional resources to, through this emerging technology, build an 'exo-brain' capable of becoming a personal assistant for the inhabitants, with whom to interact proactively and contribute to their general well-being. The main objective of this work is to show how this is possible.

Keywords: Alzheimer’s disease, artificial intelligence, healthy architecture, neuroarchitecture, architectural design

Procedia PDF Downloads 62
2189 Envy and Schadenfreude Domains in a Model of Neurodegeneration

Authors: Hernando Santamaría-García, Sandra Báez, Pablo Reyes, José Santamaría-García, Diana Matallana, Adolfo García, Agustín Ibañez

Abstract:

The study of moral emotions (i.e., Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as monolithic domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested 20 patients with behavioral variant frontotemporal dementia (bvFTD), 24 patients with Alzheimer’s disease (AD), as a contrastive neurodegeneration model, and 20 healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the AD and control groups, bvFTD patients obtained significantly higher scores on all dimensions for both emotions. Interestingly, the legal dimension for both envy and Schadenfreude elicited higher emotional scores than the deservingness and moral dimensions. Furthermore, correlational analyses in bvFTD showed that higher envy and Schadenfreude scores were associated with greater deficits in social cognition, inhibitory control, and behavior. Brain anatomy findings (restricted to bvFTD and controls) confirmed differences in how these groups process each dimension. Schadenfreude was associated with the ventral striatum in all subjects. Also, in bvFTD patients, increased Schadenfreude across dimensions was negatively correlated with regions supporting social-value rewards, mentalizing, and social cognition (frontal pole, temporal pole, angular gyrus and precuneus). In all subjects, all dimensions of envy positively correlated with the volume of the anterior cingulate cortex, a region involved in processing unfair social comparisons. By contrast, in bvFTD patients, the intensified experience of envy across all dimensions was negatively correlated with a set of areas subserving social cognition, including the prefrontal cortex, the parahippocampus, and the amygdala. Together, the present results provide the first lesion-based evidence for the multidimensional nature of the emotional experiences of envy and Schadenfreude. Moreover, this is the first demonstration of a selective exacerbation of envy and Schadenfreude in bvFTD patients, probably triggered by atrophy to social cognition networks. Our results offer new insights into the mechanisms subserving complex emotions and moral cognition in neurodegeneration, paving the way for groundbreaking research on their interaction with other cognitive, social, and emotional processes.

Keywords: social cognition, moral emotions, neuroimaging, frontotemporal dementia

Procedia PDF Downloads 293
2188 Audio-Visual Entrainment and Acupressure Therapy for Insomnia

Authors: Mariya Yeldhos, G. Hema, Sowmya Narayanan, L. Dhiviyalakshmi

Abstract:

Insomnia is one of the most prevalent psychological disorders worldwide. Some of the deficiencies of the current treatments of insomnia are: side effects in the case of sleeping pills and high costs in the case of psychotherapeutic treatment. In this paper, we propose a device which provides a combination of audio visual entrainment and acupressure based compression therapy for insomnia. This device provides drug-free treatment of insomnia through a user friendly and portable device that enables relaxation of brain and muscles, with certain advantages such as low cost, and wide accessibility to a large number of people. Tools adapted towards the treatment of insomnia: -Audio -Continuous exposure to binaural beats of a particular frequency of audible range -Visual -Flash of LED light -Acupressure points -GB-20 -GV-16 -B-10

Keywords: insomnia, acupressure, entrainment, audio-visual entrainment

Procedia PDF Downloads 430
2187 Symbolic Computation via Grobner Basis

Authors: Haohao Wang

Abstract:

The purpose of this paper is to find elimination ideals via Grobner basis. We first introduce the concept of Grobner bases, and then, we provide computational algorithms to applications for curves and surfaces.

Keywords: curves, surfaces, Grobner basis, elimination

Procedia PDF Downloads 300
2186 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics

Authors: Abhiyan Paudel, Maheshwaran M Pillai

Abstract:

This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.

Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing

Procedia PDF Downloads 533
2185 Inherent Difficulties in Countering Islamophobia

Authors: Imbesat Daudi

Abstract:

Islamophobia, which is a billion-dollar industry, is widespread, especially in the United States, Europe, India, Israel, and countries that have Muslim minorities at odds with their governmental policies. Hatred of Islam in the West did not evolve spontaneously; it was methodically created. Islamophobia's current format has been designed to spread on its own, find a space in the Western psyche, and resist its eradication. Hatred has been sustained by neoconservative ideologues and their allies, which are supported by the mainstream media. Social scientists have evaluated how ideas spread, why any idea can go viral, and where new ideas find space in our brains. This was possible because of the advances in the computational power of software and computers. Spreading of ideas, including Islamophobia, follows a sine curve; it has three phases: An initial exploratory phase with a long lag period, an explosive phase if ideas go viral, and the final phase when ideas find space in the human psyche. In the initial phase, the ideas are quickly examined in a center in the prefrontal lobe. When it is deemed relevant, it is sent for evaluation to another center of the prefrontal lobe; there, it is critically examined. Once it takes a final shape, the idea is sent as a final product to a center in the occipital lobe. This center cannot critically evaluate ideas; it can only defend them from its critics. Counterarguments, no matter how scientific, are automatically rejected. Therefore, arguments that could be highly effective in the early phases are counterproductive once they are stored in the occipital lobe. Anti-Islamophobic intellectuals have done a very good job of countering Islamophobic arguments. However, they have not been as effective as neoconservative ideologues who have promoted anti-Muslim rhetoric that was based on half-truths, misinformation, or outright lies. The failure is partly due to the support pro-war activists receive from the mainstream media, state institutions, mega-corporations engaged in violent conflicts, and think tanks that provide Islamophobic arguments. However, there are also scientific reasons why anti-Islamophobic thinkers have been less effective. There are different dynamics of spreading ideas once they are stored in the occipital lobe. The human brain is incapable of evaluating further once it accepts ideas as its own; therefore, a different strategy is required to be effective. This paper examines 1) why anti-Islamophobic intellectuals have failed in changing the minds of non-Muslims and 2) the steps of countering hatred. Simply put, a new strategy is needed that can effectively counteract hatred of Islam and Muslims. Islamophobia is a disease that requires strong measures. Fighting hatred is always a challenge, but if we understand why Islamophobia is taking root in the twenty-first century, one can succeed in challenging Islamophobic arguments. That will need a coordinated effort of Intellectuals, writers and the media.

Keywords: islamophobia, Islam and violence, anti-islamophobia, demonization of Islam

Procedia PDF Downloads 48
2184 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation

Procedia PDF Downloads 306
2183 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM

Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán

Abstract:

The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.

Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM

Procedia PDF Downloads 118
2182 Serum Neurotrophins in Different Metabolic Types of Obesity

Authors: Irina M. Kolesnikova, Andrey M. Gaponov, Sergey A. Roumiantsev, Tatiana V. Grigoryeva, Alexander V. Laikov, Alexander V. Shestopalov

Abstract:

Background. Neuropathy is a common complication of obesity. In this regard, the content of neurotrophins in such patients is of particular interest. Neurotrophins are the proteins that regulate neuron survival and neuroplasticity and include brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). However, the risk of complications depends on the metabolic type of obesity. Metabolically unhealthy obesity (MUHO) is associated with a high risk of complications, while this is not the case with metabolically healthy obesity (MHO). Therefore, the aim of our work was to study the effect of the obesity metabolic type on serum neurotrophins levels. Patients, materials, methods. The study included 134 healthy donors and 104 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=40) and MUHO (n=55). In the blood serum, the concentration of BDNF and NGF was determined. In addition, the content of adipokines (leptin, asprosin, resistin, adiponectin), myokines (irisin, myostatin, osteocrin), indicators of carbohydrate, and lipid metabolism were measured. Correlation analysis revealed the relationship between the studied parameters. Results. We found that serum BDNF concentration was not different between obese patients and healthy donors, regardless of obesity metabolic type. At the same time, in obese patients, there was a decrease in serum NGF level versus control. A similar trend was characteristic of both MHO and MUHO. However, MUHO patients had a higher NGF level than MHO patients. The literature indicates that obesity is associated with an increase in the plasma concentration of NGF. It can be assumed that in obesity, there is a violation of NGF storage in platelets, which accelerates neurotrophin degradation. We found that BDNF concentration correlated with irisin levels in MUHO patients. Healthy donors had a weak association between NGF and VEGF levels. No such association was found in obese patients, but there was an association between NGF and leptin concentrations. In MHO, the concentration of NHF correlated with the content of leptin, irisin, osteocrin, insulin, and the HOMA-IR index. But in MUHO patients, we found only the relationship between NGF and adipokines (leptin, asprosin). It can be assumed that in patients with MHO, the replenishment of serum NGF occurs under the influence of muscle and adipose tissue. In the MUHO patients only the effect of adipose tissue on NGF was observed. Conclusion. Obesity, regardless of metabolic type, is associated with a decrease in serum NGF concentration. We showed that muscle and adipose tissues make a significant contribution to the serum NGF pool in the MHO patients. In MUHO there is no effect of muscle on the NGF level, but the effect of adipose tissue remains.

Keywords: neurotrophins, nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, obesity, metabolically healthy obesity, metabolically unhealthy obesity

Procedia PDF Downloads 100