Search results for: code composer studio
625 Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity
Authors: Jean Rosemond Dora, Karol Nemoga
Abstract:
In this work, we tackle a frequent problem that frequently occurs in the cybersecurity field which is the exploitation of websites by XSS attacks, which are nowadays considered a complicated attack. These types of attacks aim to execute malicious scripts in a web browser of the client by including code in a legitimate web page. A serious matter is when a website accepts the “user-input” option. Attackers can exploit the web application (if vulnerable), and then steal sensitive data (session cookies, passwords, credit cards, etc.) from the server and/or from the client. However, the difficulty of the exploitation varies from website to website. Our focus is on the usage of ontology in cybersecurity against XSS attacks, on the importance of the ontology, and its core meaning for cybersecurity. We explain how a vulnerable website can be exploited, and how different JavaScript payloads can be used to detect vulnerabilities. We also enumerate some tools to use for an efficient analysis. We present detailed reasoning on what can be done to improve the security of a website in order to resist attacks, and we provide supportive examples. Then, we apply an ontology model against XSS attacks to strengthen the protection of a web application. However, we note that the existence of ontology does not improve the security itself, but it has to be properly used and should require a maximum of security layers to be taken into account.Keywords: cybersecurity, web application vulnerabilities, cyber threats, ontology model
Procedia PDF Downloads 172624 Natural Frequency Analysis of a Porous Functionally Graded Shaft System
Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System
Abstract:
The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.Keywords: Finite element method, Functionally graded material, Porosity volume fraction, Power law
Procedia PDF Downloads 205623 The Healthcare Costs of BMI-Defined Obesity among Adults Who Have Undergone a Medical Procedure in Alberta, Canada
Authors: Sonia Butalia, Huong Luu, Alexis Guigue, Karen J. B. Martins, Khanh Vu, Scott W. Klarenbach
Abstract:
Obesity is associated with significant personal impacts on health and has a substantial economic burden on payers due to increased healthcare use. A contemporary estimate of the healthcare costs associated with obesity at the population level are lacking. This evidence may provide further rationale for weight management strategies. Methods: Adults who underwent a medical procedure between 2012 and 2019 in Alberta, Canada were categorized into the investigational cohort (had body mass index [BMI]-defined class 2 or 3 obesity based on a procedure-associated code) and the control cohort (did not have the BMI procedure-associated code); those who had bariatric surgery were excluded. Characteristics were presented and healthcare costs ($CDN) determined over a 1-year observation period (2019/2020). Logistic regression and a generalized linear model with log link and gamma distribution were used to assess total healthcare costs (comprised of hospitalizations, emergency department visits, ambulatory care visits, physician visits, and outpatient prescription drugs); potential confounders included age, sex, region of residence, and whether the medical procedure was performed within 6-months before the observation period in the partial adjustment, and also the type of procedure performed, socioeconomic status, Charlson Comorbidity Index (CCI), and seven obesity-related health conditions in the full adjustment. Cost ratios and estimated cost differences with 95% confidence intervals (CI) were reported; incremental cost differences within the adjusted models represent referent cases. Results: The investigational cohort (n=220,190) was older (mean age: 53 standard deviation [SD]±17 vs 50 SD±17 years), had more females (71% vs 57%), lived in rural areas to a greater extent (20% vs 14%), experienced a higher overall burden of disease (CCI: 0.6 SD±1.3 vs 0.3 SD±0.9), and were less socioeconomically well-off (material/social deprivation was lower [14%/14%] in the most well-off quintile vs 20%/19%) compared with controls (n=1,955,548). Unadjusted total healthcare costs were estimated to be 1.77-times (95% CI: 1.76, 1.78) higher in the investigational versus control cohort; each healthcare resource contributed to the higher cost ratio. After adjusting for potential confounders, the total healthcare cost ratio decreased, but remained higher in the investigational versus control cohort (partial adjustment: 1.57 [95% CI: 1.57, 1.58]; full adjustment: 1.21 [95% CI: 1.20, 1.21]); each healthcare resource contributed to the higher cost ratio. Among urban-dwelling 50-year old females who previously had non-operative procedures, no procedures performed within 6-months before the observation period, a social deprivation index score of 3, a CCI score of 0.32, and no history of select obesity-related health conditions, the predicted cost difference between those living with and without obesity was $386 (95% CI: $376, $397). Conclusions: If these findings hold for the Canadian population, one would expect an estimated additional $3.0 billion per year in healthcare costs nationally related to BMI-defined obesity (based on an adult obesity rate of 26% and an estimated annual incremental cost of $386 [21%]); incremental costs are higher when obesity-related health conditions are not adjusted for. Results of this study provide additional rationale for investment in interventions that are effective in preventing and treating obesity and its complications.Keywords: administrative data, body mass index-defined obesity, healthcare cost, real world evidence
Procedia PDF Downloads 108622 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters
Authors: Nina Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model
Procedia PDF Downloads 154621 Numerical Study of Heat Transfer in Silica Aerogel
Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa
Abstract:
Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity
Procedia PDF Downloads 290620 Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers
Authors: Mohammedi Ferhate, Hakim Chadli, Laggoun Chaouki
Abstract:
The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle.Keywords: hydrogen, combust, chemical laser, halogen atom
Procedia PDF Downloads 85619 Proposed Solutions Based on Affective Computing
Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla
Abstract:
A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition
Procedia PDF Downloads 368618 Community Based Disaster Risk Reduction in Mizoram, India
Authors: Lalrokima Chenkual
Abstract:
Legal provision and various guidelines issued by the National Disaster Management Authority in India strives for setting up of disaster management authority from the central government to the district level. Community-Based Disaster Risk Reduction practice is still relevant as the communities are the victim as well as the first responder in any incidents. The primary goal of Community Based Disaster Risk Reduction is to reduce vulnerability of the concerned community and strengthen its existing capacity to cope with disaster. By involving the community in the preparedness phase, it not only increases the likelihood of coordinated action by the communities to help in mitigating disasters and lessening the impact of disaster but also brings the community together to address the issue collectively. Community participation ensures local ownership, addresses local needs, and promotes volunteerism and mutual help to prevent and minimise damage. Community-Based Disaster Risk Reduction is very much relevant for Mizoram as the society is closed knit, population is very less, religion homogeneity i.e Christianity, very active and widespread community-based organization viz, Young Mizo Association, MHIP (Women Federation), MUP (Elders Clubs which are guided together by Mizo code of morals conduct termed as Tlawmngaihna.Keywords: community, close-knit, first responder, Tlawmngaihna
Procedia PDF Downloads 142617 Smart Trash Can Interface between Origin and Destination Waste Management
Authors: Fatemeh Ghorbani
Abstract:
The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.Keywords: connector, smart trash can, waste management
Procedia PDF Downloads 66616 Damage Assessment of Current Facades in Turkey throughout the Seismic Actions
Authors: Büşra Elibol, İsmail Sait Soyer, Hamid Farrokh Ghatte
Abstract:
The continuity of the structural and non-structural elements within the envelope of the buildings is one of the fundamental factors in buildings during seismic actions. This investigation aims to make a comparison between Van and İzmir earthquakes in terms of damage assessment of the various facades. A strong earthquake (magnitude 7.2) struck the city of Van in the east of Turkey on 23 October 2011, and similarly, another strong earthquake struck the city of İzmir (magnitude 6.9) in Turkey on 30 October 2020. This paper presents the damage assessment of the current facade systems from multi-story buildings in Van and İzmir, Turkey. This investigation covers the buildings greater than three stories in height, excluding most unreinforced masonry facades. Regarding a building that can have more than one facade system, any of the facade systems are considered individually. Observation of different kinds of damages in the facade is discussed and represented in terms of its performance level throughout the seismic actions. Furthermore, presenting the standard design guidelines (i.e., Turkish seismic design code) is required not only for designers but also for installers of facade systems.Keywords: damage, earthquake, facade, structural element, seismic action
Procedia PDF Downloads 161615 Seismic Hazard Response of Bhairabi-Sairang Tunnel Due to the Effect of Faulting
Authors: Tauhidur Rahman, Subhrajit Pathak
Abstract:
In this study, structural response of Bhairabi-Sairang Tunnel due to presence of seismic faults has been thoroughly examined. There may be several active faults located in and around the project. Faults are the key seismic sources from where earthquakes are originated. The magnitude of earthquake will depend on the length of the fault. A long fault more than 200 km can produce earthquake of magnitude (Mw ) more than 8.0 and smaller length less than 10 km will produce small magnitude earthquake. Now-a-days it is very much essential to identify the distance and length of a fault from the project site. Based on this, in the present paper, a case study of the Bhairabi Sairang Tunnel of 1.73 Km length located in the North Eastern Region of India has been selected to calculate the seismic hazard from the surrounding effect of faults. A comparative study of seismic hazard at the tunnel site has been made based on the location of faults with the seismic hazard obtained from the Indian Standards code of Practice. In this paper, a practical problem of a tunnel has been analysed based on the available faults around the project site accounting the soil factor.Keywords: seismic hazard, effect of fault, soil factor, Bhairabi Sairang tunnel
Procedia PDF Downloads 566614 Performance of Coded Multi-Line Copper Wire for G.fast Communications in the Presence of Impulsive Noise
Authors: Israa Al-Neami, Ali J. Al-Askery, Martin Johnston, Charalampos Tsimenidis
Abstract:
In this paper, we focus on the design of a multi-line copper wire (MLCW) communication system. First, we construct our proposed MLCW channel and verify its characteristics based on the Kolmogorov-Smirnov test. In addition, we apply Middleton class A impulsive noise (IN) to the copper channel for further investigation. Second, the MIMO G.fast system is adopted utilizing the proposed MLCW channel model and is compared to a single line G-fast system. Second, the performance of the coded system is obtained utilizing concatenated interleaved Reed-Solomon (RS) code with four-dimensional trellis-coded modulation (4D TCM), and compared to the single line G-fast system. Simulations are obtained for high quadrature amplitude modulation (QAM) constellations that are commonly used with G-fast communications, the results demonstrate that the bit error rate (BER) performance of the coded MLCW system shows an improvement compared to the single line G-fast systems.Keywords: G.fast, Middleton Class A impulsive noise, mitigation techniques, Copper channel model
Procedia PDF Downloads 132613 Experiences during the First Year of Practice among New Nurses
Authors: Chanya Thanomlikhit, Pataraporn Kheawwan
Abstract:
Transition from student to staff nurse can be difficult for nurses beginning their nursing profession. Objective: The purpose of this study was to explore the transition experiences during the first year of practice among new nurses in Thailand. Methods: A descriptive design using a survey questionnaire was used. One hundred seventy-eight new graduate nurses from one tertiary hospital in Thailand participated in this study. Data were collected using paper-and-pencil format of the Revised Casey-Fink Graduate Nurse Experience Survey. Results: Participants reported three types of difficulties they were experiencing during the first year of practice including role expectation, lack of confidence, and workload. New nurses reported uncomfortable to perform high risk skills such as code/emergency, ventilator care, EKG, and chest tube care. Organizing, prioritizing and communication were rated as difficult tasks during 12-month transition period. New nurses satisfied the benefit package they received from the institution, however, salary was lowest satisfied. Conclusion: Results inform transition program development for new nurses. Initiative of systems that support for the graduate nurse during the first year of practice is suggested.Keywords: new graduate nurse, transition, nurse residency program, clinical education
Procedia PDF Downloads 238612 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid
Authors: M. Amoura, M. Benmoussa, N. Zeraibi
Abstract:
The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation
Procedia PDF Downloads 322611 First Principls Study of Structural, Electronic, Magnetic and Optical Properties of SiNi₂O₄ Spinel Oxide
Authors: Karkour Selma
Abstract:
We conducted first principles full potential calculations using the Wien2k code to explore the structural, electronic, magnetic, and optical properties of SiNi₂O₄, a cubic normal spinel oxide. Our calculations, based on the GGA-PBEsol of the generalized gradient approximation, revealed several key findings. The spinel oxides exhibited a stable cubic structure in the ferromagnetic phase and showed 100% spin polarization. We determined the equilibrium lattice constant and internal parameter values. In terms of the electronic properties, we observed a direct bandgap of 2.68 eV for the spin-up configuration, while the spin-down configuration exhibited an indirect bandgap of 0.82 eV. Additionally, we calculated the total density of states and partial densities for each atom, finding a magnetic moment spin density of states of 8.0 μB per formula unit. The optical properties have been calculated. The real, Ԑ₁(ω) and the imaginary, Ԑ₂(ω) parts of the complex dielectric constants, refractivity, reflection and energy loss when light scattered from the material. The absorption region spanned from 1.5 eV to 14 eV, with significant intensity. The calculated results confirm the suitability of this material for optical and spintronic devices application.Keywords: DFT, spintronic, GGA, spinel
Procedia PDF Downloads 76610 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting
Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva
Abstract:
The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.Keywords: dipole antenna, double-band, high efficiency, rectenna
Procedia PDF Downloads 124609 Subjective Time as a Marker of the Present Consciousness
Authors: Anastasiya Paltarzhitskaya
Abstract:
Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.Keywords: temporal consciousness, time perception, memory, present
Procedia PDF Downloads 76608 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach
Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi
Abstract:
The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.Keywords: reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation
Procedia PDF Downloads 163607 A Novel Way to Create Qudit Quantum Error Correction Codes
Authors: Arun Moorthy
Abstract:
Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.Keywords: qudit, error correction, quantum, qubit
Procedia PDF Downloads 160606 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications
Authors: M. Madigoe, R. Modiba
Abstract:
High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys
Procedia PDF Downloads 186605 Evaluation of Cyclic Thermo-Mechanical Responses of an Industrial Gas Turbine Rotor
Authors: Y. Rae, A. Benaarbia, J. Hughes, Wei Sun
Abstract:
This paper describes an elasto-visco-plastic computational modelling method which can be used to assess the cyclic plasticity responses of high temperature structures operating under thermo-mechanical loadings. The material constitutive equation used is an improved unified multi-axial Chaboche-Lemaitre model, which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorithm. The associated user material (UMAT) code is developed and calibrated across isothermal hold-time low cycle fatigue tests for a typical turbine rotor steel for use in finite element (FE) implementation. The model is applied to a realistic industrial gas turbine rotor, where the study focuses its attention on the deformation heterogeneities and critical high stress areas within the rotor structure. The potential improvements of such FE visco-plastic approach are discussed. An integrated life assessment procedure based on R5 and visco-plasticity modelling, is also briefly addressed.Keywords: unified visco-plasticity, thermo-mechanical, turbine rotor, finite element modelling
Procedia PDF Downloads 130604 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units
Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani
Abstract:
There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation
Procedia PDF Downloads 416603 Use of Computer and Machine Learning in Facial Recognition
Authors: Neha Singh, Ananya Arora
Abstract:
Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.Keywords: facial action, action units, coding, machine learning
Procedia PDF Downloads 106602 Functions of Bilingualism in Hong Kong: Comparing the Linguistic Landscape of Tsim Sha Tsui and Tai Wai
Authors: Xinyi Huang
Abstract:
As a former British colony and one of the most famous world financial centers today, Hong Kong attracts countless businessmen and tourists to visit or settle down every year. Hong Kong is a land that leads western culture to blossom in Asia, and in the meantime, it inherits the unique charm of Chinese traditional culture. The Chinese-English bilingual phenomenon can be seen everywhere in Hong Kong. The public presentation, code choice, and practical use of these two languages can also reflect the economic and social status, population distribution, and individual identity construction of a specific area. This paper mainly compares the linguistic landscape of two areas with different social functions in Hong Kong: Tsim Sha Tsui, a large commercial center in Kowloon, and Tai Wai, a residential area in New Territories. By adopting the methodology of the Walking Tour, the bilingual data of 75 photos are collected unintentionally during the field trip in the two areas. Through the methods of quantitative analysis and linguistic landscape studies, this paper deeply analyzes the similarities and differences in language distribution and the respective social functions of two languages in the two places.Keywords: bilingualism, linguistic landscape, identity construction, commodification
Procedia PDF Downloads 153601 Algorithmic Generation of Carbon Nanochimneys
Authors: Sorin Muraru
Abstract:
Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures
Procedia PDF Downloads 170600 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard
Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane
Abstract:
This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard
Procedia PDF Downloads 297599 Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics
Authors: Mauricio Gracia, Luis Leal, Bharat Verma
Abstract:
Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients.Keywords: CFD, current draft coefficient, STAR-CCM+, OCIMF, Bollard pull
Procedia PDF Downloads 173598 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 325597 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant
Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro
Abstract:
The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.Keywords: acoustic impact, industrial noise, mitigation, rocket noise
Procedia PDF Downloads 146596 Negative Changes in Sexual Behavior of Pregnant Women
Authors: Glauberto S. Quirino, Emanuelly V. Pereira, Amana S. Figueiredo, Antonia T. F. Santos, Paulo R. A. Firmino, Denise F. F. Barbosa, Caroline B. Q. Aquino, Eveliny S. Martins, Cinthia G. P. Calou, Ana K. B. Pinheiro
Abstract:
Introduction: During pregnancy there are adjustments in the physical, emotional, existential and sexual areas, which may contribute to changes in sexual behavior. The objective was to analyze the sexual behavior of pregnant women. Methods: Quantitative, exploratory-descriptive study, approved by the Ethics and Research Committee of the Regional University of Cariri. For data collection, it was used the Sexuality Questionnaire in Gestation and Sexual Quotient - Female Version. It was carried out in public institutions in the urban and rural areas of three municipalities of the Metropolitan Region of Cariri, south of Ceará, Brazil from February to September 2016. The sampling was proportional stratified by convenience. A total of 815 pregnant women who were literate and aged 20 years or over were broached. 461 pregnant women were excluded because of high risk, adolescence, saturation of the extract, incomplete filling of the instrument, mental and physical handicap, without sexual partner, and the sample was 354 pregnant. The data were grouped, organized and analyzed in the statistical program R Studio (version 386 3.2.4). Descriptive frequency statistics and non-parametric tests were used to analyze the variables, and the results were shown in graphs and tables. Results: The women presented a minimum age of 20, maximum 35 and average of 26.9 years, predominantly urban area residents, with a monthly income of up to one minimum wage (US$ 275,00), high school, catholic, with fixed partner, heterosexuals, multiparous, multiple sexual partners throughout life and with the beginning of sexual life in adolescence (median age 17 years). There was a reduction in sexual practices (67%) and when they were performed, they were more frequent in the first trimester (79.7%) and less frequent in the third trimester (30.5%). Preliminary sexual practices did not change and were more frequent in the second trimester (46.6%). Throughout the gestational trimesters, the partner was referred as the main responsible for the sexual initiative. The women performed vaginal sex (97.7%) and provided greater pleasure (42.8%) compared to non-penetrative sex (53.9%) (oral sex and masturbation). There was also a reduction in the sexual disposition of pregnant women (90.7%) and partner (72.9%), mainly in the first trimester (78.8%), and sexual positions. Sexual performance ranged from regular to good (49.7%). Level of schooling, marital status, sexual orientation of the pregnant woman and the partner, sexual practices and positions, preliminaries, frequency of sexual practices and importance attributed to them were variables that influenced negatively sexual performance and satisfaction. It is concluded that pregnancy negatively changes the sexual behavior of the women and it is suggested to further investigations and approach of the partner, in order to clarify the influence of these variables on the sexual function and subsidize intervention strategies, with a view to the integrality of sexual and reproductive health.Keywords: obstetric nursing, pregnant women, sexual behavior, women's health
Procedia PDF Downloads 319