Search results for: assistive devices
1565 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters
Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud
Abstract:
Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.Keywords: energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation
Procedia PDF Downloads 4451564 Electret: A Solution of Partial Discharge in High Voltage Applications
Authors: Farhina Haque, Chanyeop Park
Abstract:
The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.Keywords: electrets, high power density, partial discharge, triode corona discharge
Procedia PDF Downloads 2031563 An Investigation on Viscoelastic and Electrical Properties of Biopolymer-Based Composites
Authors: K. Sever, Y. Seki, Z. Yenier, İ. Şen, M. Sarikanat
Abstract:
It is known that Chitosan, as a natural polymer, has many excellent properties such as bicompotability, biodegradability and nontoxicity. Besides it has some limitations such as poor solubility in water and low conductivity in electrical devices and sensor applications. In order to improve electrical conductivity properties grapheme loading was conducted into chitosan. For this aim, chitosan solution was prepared in acidic condition and Graphene at different ratios was mixed with chitosan solution by the help of homogenizator. After film formation electrical conductivity values of chitosan and graphene loaded chitosan were determined. After grapheme loading into chitosan,solution significant increases in surface resistivity value of chitosan were observed. Besides variations on viscoeleastic properties with graphene loading was determined by dynamic mechanical analysis. Storage and Loss moduli were obtained for chitosan and grapheme loaded chitosan samples.Keywords: chitosan, graphene, viscoelastic properties, electrical conductivity
Procedia PDF Downloads 4861562 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1461561 Energy Efficient Firefly Algorithm in Wireless Sensor Network
Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab
Abstract:
Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.Keywords: wireless network, SN, Firefly, energy efficiency
Procedia PDF Downloads 3891560 Advanced Simulation of Power Consumption of Electric Vehicles
Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo
Abstract:
Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.Keywords: electric vehicles, EV, power consumption, power management, simulation
Procedia PDF Downloads 5161559 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges
Authors: M. Kowalski, M. Kastek, M. Szustakowski
Abstract:
Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertzKeywords: terahertz, infrared, object detection, screening camera, image processing
Procedia PDF Downloads 3571558 GPS Refinement in Cities Using Statistical Approach
Authors: Ashwani Kumar
Abstract:
GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising.Keywords: global positioning system, statistical approach, intelligent transport systems, least squares estimation
Procedia PDF Downloads 2881557 Bending the Consciousnesses: Uncovering Environmental Issues Through Circuit Bending
Authors: Enrico Dorigatti
Abstract:
The growing pile of hazardous e-waste produced especially by those developed and wealthy countries gets relentlessly bigger, composed of the EEDs (Electric and Electronic Device) that are often thrown away although still well functioning, mainly due to (programmed) obsolescence. As a consequence, e-waste has taken, over the last years, the shape of a frightful, uncontrollable, and unstoppable phenomenon, mainly fuelled by market policies aiming to maximize sales—and thus profits—at any cost. Against it, governments and organizations put some efforts in developing ambitious frameworks and policies aiming to regulate, in some cases, the whole lifecycle of EEDs—from the design to the recycling. Incidentally, however, such regulations sometimes make the disposal of the devices economically unprofitable, which often translates into growing illegal e-waste trafficking—an activity usually undertaken by criminal organizations. It seems that nothing, at least in the near future, can stop the phenomenon of e-waste production and accumulation. But while, from a practical standpoint, a solution seems hard to find, much can be done regarding people's education, which translates into informing and promoting good practices such as reusing and repurposing. This research argues that circuit bending—an activity rooted in neo-materialist philosophy and post-digital aesthetic, and based on repurposing EEDs into novel music instruments and sound generators—could have a great potential in this. In particular, it asserts that circuit bending could expose ecological, environmental, and social criticalities related to the current market policies and economic model. Not only thanks to its practical side (e.g., sourcing and repurposing devices) but also to the artistic one (e.g., employing bent instruments for ecological-aware installations, performances). Currently, relevant literature and debate lack interest and information about the ecological aspects and implications of the practical and artistic sides of circuit bending. This research, therefore, although still at an early stage, aims to fill in this gap by investigating, on the one side, the ecologic potential of circuit bending and, on the other side, its capacity of sensitizing people, through artistic practice, about e-waste-related issues. The methodology will articulate in three main steps. Firstly, field research will be undertaken—with the purpose of understanding where and how to source, in an ecologic and sustainable way, (discarded) EEDs for circuit bending. Secondly, artistic installations and performances will be organized—to sensitize the audience about environmental concerns through sound art and music derived from bent instruments. Data, such as audiences' feedback, will be collected at this stage. The last step will consist in realising workshops to spread an ecologically-aware circuit bending practice. Additionally, all the data and findings collected will be made available and disseminated as resources.Keywords: circuit bending, ecology, sound art, sustainability
Procedia PDF Downloads 1711556 The Impact of Information and Communication Technology on the Performance of Office Technology Managers
Authors: Sunusi Tijjani
Abstract:
Information and communication technology is an indispensable tool in the performance of office technology managers. Today's offices are automated and equipped with modern office machines that enhances and improve the work of office managers. However, today's office technology managers can process, evaluate, manage and communicate all forms of information using technological devices. Information and Communication Technology is viewed as the process of processing, storing ad dissemination information while office technology managers are trained professional who can effectively operate modern office machines, perform administrative duties and attend meetings to take dawn minute of meetings. This paper examines the importance of information and communication technology toward enhancing the work of office managers. It also stresses the importance of information and communication technology toward proper and accurate record management.Keywords: communication, information, technology, managers
Procedia PDF Downloads 4851555 Chromia-Carbon Nanocomposite Materials for Energy Storage Devices
Authors: Muhammad A. Nadeem, Shaheed Ullah
Abstract:
The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis.Keywords: nanocomposites, transmission electron microscopy, non-faradic process
Procedia PDF Downloads 4351554 Chemical Bath Deposition Technique (CBD) of Cds Used in Closed Space Sublimation (CSS) of CdTe Solar Cell
Authors: Zafar Mahmood, Fahimullah Babar, Surriyia Naz, Hafiz Ur Rehman
Abstract:
Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Elipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here).The efficiency came out to be approximately 16.5 % and the CIGS (copper- indium –gallium- selenide) maximum efficiency is 20 %.The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy). Procedia PDF Downloads 3641553 Multi-Layer Mn-Doped SnO2 Thin Film for Multi-State Resistive Switching
Authors: Zhemi Xu, Dewei Chu, Sean Li
Abstract:
Well self-assembled pure and Mn-doped SnO2 nanocubes were synthesized by interface thermodynamic method, which is ideal for highly homogeneous large scale thin film deposition on flexible substrates for various electric devices. Mn-doped SnO2 shows very good resistive switching with high On/Off ratio (over 103), endurance and retention characteristics. More important, the resistive state can be tuned by multi-layer fabrication by alternate pure SnO2 and Mn-doped SnO2 nanocube layer, which improved the memory capacity of resistive switching effectively. Thus, such a method provides transparent, multi-level resistive switching for next generation non-volatile memory applications.Keywords: metal oxides, self-assembly nanoparticles, multi-level resistive switching, multi-layer thin film
Procedia PDF Downloads 3451552 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources
Authors: Amin Khamoosh, Hamed Faramarzifar
Abstract:
In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques
Procedia PDF Downloads 561551 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web
Authors: Aayushi Somani, Siba P. Samal
Abstract:
Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR
Procedia PDF Downloads 1701550 Cleaner Technology for Stone Crushers
Authors: S. M. Ahuja
Abstract:
There are about 12000 stone crusher units in India and are located in clusters around urban areas to the stone quarries. These crushers create lot of fugitive dust emissions and noise pollution which is a major health hazard for the people working in the crushers and also living in its vicinity. Ambient air monitoring was carried out near various stone crushers and it has been observed that fugitive emission varied from 300 to 8000 mg/Nm3. A number of stone crushers were thoroughly studied and their existing pollution control devices were examined. Limitations in the existing technology were also studied. A technology consisting of minimal effective spray nozzles to reduce the emissions at source followed by a containment cum control system having modular cyclones as air pollution control device has been conceived. Besides preliminary energy audit has also been carried out in some of the stone crushers which indicates substantial potential for energy saving.Keywords: stone crushers, spray nozzles, energy audit
Procedia PDF Downloads 3321549 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells
Authors: Soumitra Satapathi, Anubhav Raghav
Abstract:
Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells
Procedia PDF Downloads 1641548 Energy Saving Techniques for MIMO Decoders
Authors: Zhuofan Cheng, Qiongda Hu, Mohammed El-Hajjar, Basel Halak
Abstract:
Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems.Keywords: energy, lattice reduction, MIMO, VLSI
Procedia PDF Downloads 3301547 Capacitive Coupling Wireless Power Transfer System with 6.78 MHz Class D Inverter
Authors: Kang Hyun Yi
Abstract:
Wireless power transfer technologies are inductive coupling, magnetic resonance, and capacitive coupling methods, typically. Among them, the capacitive coupling wireless power transfer, also named Capacitive Coupling Wireless Power Transfer (CCWPT), has been researched to overcome the drawbacks of other approaches. The CCWPT has many advantages such as a simple structure, low standing power loss, reduced Electromagnetic Interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system is consisted of the 6.78MHz class D inverter with the LC low pass filter, the capacitor between a transmitter and a receiver and impedance transformers. The system is verified with a prototype for charging mobile devices.Keywords: wireless power transfer, capacitive coupling power transfer, class D inverter, 6.78MHz
Procedia PDF Downloads 6511546 A Study of the Assistant Application for Tourists Taking Metros
Authors: Anqi Wang, Linye Zhang
Abstract:
With the proliferation and development of mobile devices, various mobile apps have appeared to satisfy people’s needs. Metro, with the feature of convenient, punctuality and economic, is one of the most popular modes of transportation in cities. Yet, there are still some inconveniences brought by various factors, impacting tourists’ riding experience. The aim of this study is to help tourists to shorten the time of purchasing tickets, to provide them clear metro information and direct navigation, detailed schedule as well as a way to collect metro cards as souvenir. The study collects data through three phases, including observation, survey and test. Data collected from 106 tourists totally in Wuhan metro stations are discussed in the study. The result reflects tourists’ demand when they take the metro. It also indicates the feasibility of using mobile technology to improve passenger’s experience.Keywords: mobile app, metro, public transportation, ticket, mobile payment, indoors positioning, tourists
Procedia PDF Downloads 1401545 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning
Authors: R. Abdulrahman, A. Eardley, A. Soliman
Abstract:
The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)
Procedia PDF Downloads 1881544 An Automated R-Peak Detection Method Using Common Vector Approach
Authors: Ali Kirkbas
Abstract:
R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.Keywords: ECG, R-peak classification, common vector approach, machine learning
Procedia PDF Downloads 641543 Students’ Perspectives on Learning Science Education amidst COVID-19
Authors: Rajan Ghimire
Abstract:
One of the diseases caused by the coronavirus shook the whole world. This situation challenged the education system across the world and compelled educators to shift to an online mode of teaching. Many academic institutions that were persistent to keep their traditional pedagogical approach were also forced to change their teaching methods. This study aims to assess science education students' experiences and perceptions of this global issue, especially on the science teaching and learning process. The study is based on qualitative research and through in-depth interviews with respondents and data is analyzed. Online distance teaching and learning processes meet the requirements of students who cannot or prefer not to participate in conventional classroom settings. But there are some challenges for the students and teachers in the science teaching learning process. This study recommends some points to all stakeholders.Keywords: electronic devices, internet, online and distance learning, science education, educational policy
Procedia PDF Downloads 531542 Toward Cloud E-learning System Based on Smart Tools
Authors: Mohsen Maraoui
Abstract:
In the face of the growth in the quantity of data produced, several methods and techniques appear to remedy the problems of processing and analyzing large amounts of information mainly in the field of teaching. In this paper, we propose an intelligent cloud-based teaching system for E-learning content services. This system makes easy the manipulation of various educational content forms, including text, images, videos, 3 dimensions objects and scenes of virtual reality and augmented reality. We discuss the integration of institutional and external services to provide personalized assistance to university members in their daily activities. The proposed system provides an intelligent solution for media services that can be accessed from smart devices cloud-based intelligent service environment with a fully integrated system.Keywords: cloud computing, e-learning, indexation, IoT, learning in Arabic language, smart tools
Procedia PDF Downloads 1351541 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)
Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour
Abstract:
Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.Keywords: standpipe, diver, FOCS, monitoring, Raman scattering
Procedia PDF Downloads 3571540 Protecting Privacy and Data Security in Online Business
Authors: Bilquis Ferdousi
Abstract:
With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.Keywords: privacy, data security, legislation, online business
Procedia PDF Downloads 1061539 Interoperability Model Design of Smart Grid Power System
Authors: Seon-Hack Hong, Tae-Il Choi
Abstract:
Interoperability is defined as systems, components, and devices developed by different entities smoothly exchanging information and functioning organically without mutual consultation, being able to communicate with each other and computer systems of the same type or different types, and exchanging information or the ability of two or more systems to exchange information and use the information exchanged without extra effort. Insufficiencies such as duplication of functions when developing systems and applications due to lack of interoperability in the electric power system and low efficiency due to a lack of mutual information transmission system between the inside of the application program and the design is improved, and the seamless linkage of newly developed systems is improved. Since it is necessary to secure interoperability for this purpose, we designed the smart grid-based interoperability standard model in this paper.Keywords: interoperability, power system, common information model, SCADA, IEEE2030, Zephyr
Procedia PDF Downloads 1241538 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2881537 A Double Epilayer PSGT Trench Power MOSFETs for Low to Medium Voltage Power Applications
Authors: Alok Kumar Kamal, Vinod Kumar
Abstract:
The trench gate MOSFET has shown itself as the most appropriate power device for low to medium voltage power applications due to its lowest possible ON resistance among all power semiconductor devices. In this research work a double-epilayer PSGT structure using a thin layer of N+ polysilicon as gate material. The total ON-state resistance (RON) of UMOSFET can be reduced by optimizing the epilayer thickness. The optimized structure of Double-Epilayer exhibits a 25.8% reduction in the ON-state resistance at Vgs=5V and improving the switching characteristics by reducing the Reverse transfer capacitance (Cgd) by 7.4%.Keywords: Miller-capacitance, double-Epilayer;switching characteristics, power trench MOSFET (U-MOSFET), on-state resistance, blocking voltage
Procedia PDF Downloads 731536 Seismic Analysis of Adjacent Buildings Connected with Dampers
Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar
Abstract:
This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters
Procedia PDF Downloads 493