Search results for: Fung’s quasilinear viscoelastic (QLV) model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17005

Search results for: Fung’s quasilinear viscoelastic (QLV) model

7375 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand

Authors: Leila Jafari, Viliam Makis

Abstract:

In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.

Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand

Procedia PDF Downloads 470
7374 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks

Authors: Faisal Al Yahmadi, Muhammad R. Ahmed

Abstract:

Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.

Keywords: smart grid network, security, threats, vulnerabilities

Procedia PDF Downloads 145
7373 Creating Growth and Reducing Inequality in Developing Countries

Authors: Rob Waddle

Abstract:

We study an economy with weak justice and security systems and with weak public policy and regulation or little capacity to implement them, and with high barriers to profitable sectors. We look at growth and development opportunities based on the derived demand. We show that there is hope for such an economy to grow up and to generate a win-win situation for all stakeholders if the derived demand is supplied. We then investigate conditions that could stimulate the derived demand supply. We show that little knowledge of public, private and international expenditures in the economy and academic tools are enough to trigger the derived demand supply. Our model can serve as guidance to donor and NGO working in developing countries, and show to media the best way to help is to share information about existing and accessible opportunities. It can also provide direction to vocational schools and universities that could focus more on providing tools to seize existing opportunities.

Keywords: growth, development, monopoly, oligopoly, inequality

Procedia PDF Downloads 341
7372 Effect of Incentives on Knowledge Sharing and Learning: Evidence from the Indian IT Sector

Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues

Abstract:

The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) program, thanks to their in-house technological abilities. This paper tries to study the various knowledge-based incentive programs and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM incentives, knowledge sharing, and learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.

Keywords: knowledge management, knowledge management incentives, knowledge sharing, learning

Procedia PDF Downloads 482
7371 Tracing a Timber Breakthrough: A Qualitative Study of the Introduction of Cross-Laminated-Timber to the Student Housing Market in Norway

Authors: Marius Nygaard, Ona Flindall

Abstract:

The Palisaden student housing project was completed in August 2013 and was, with its eight floors, Norway’s tallest timber building at the time of completion. It was the first time cross-laminated-timber (CLT) was utilized at this scale in Norway. The project was the result of a concerted effort by a newly formed management company to establish CLT as a sustainable and financially competitive alternative to conventional steel and concrete systems. The introduction of CLT onto the student housing market proved so successful that by 2017 more than 4000 individual student residences will have been built using the same model of development and construction. The aim of this paper is to identify the key factors that enabled this breakthrough for CLT. It is based on an in-depth study of a series of housing projects and the role of the management company who both instigated and enabled this shift of CLT from the margin to the mainstream. Specifically, it will look at how a new building system was integrated into a marketing strategy that identified a market potential within the existing structure of the construction industry and within the economic restrictions inherent to student housing in Norway. It will show how a key player established a project model that changed both the patterns of cooperation and the information basis for decisions. Based on qualitative semi-structured interviews with managers, contractors and the interdisciplinary teams of consultants (architects, structural engineers, acoustical experts etc.) this paper will trace the introduction, expansion and evolution of CLT-based building systems in the student housing market. It will show how the project management firm’s position in the value chain enabled them to function both as a liaison between contractor and client, and between contractor and producer. A position that allowed them to improve the flow of information. This ensured that CLT was handled on equal terms to other structural solutions in the project specifications, enabling realistic pricing and risk evaluation. Secondly, this paper will describe and discuss how the project management firm established and interacted with a growing network of contractors, architects and engineers to pool expertise and broaden the knowledge base across Norway’s regional markets. Finally, it will examine the role of the client, the building typology, and the industrial and technological factors in achieving this breakthrough for CLT in the construction industry. This paper gives an in-depth view of the progression of a single case rather than a broad description of the state of the art of large-scale timber building in Norway. However, this type of study may offer insights that are important to the understanding not only of specific markets but also of how new technologies should be introduced in big and well-established industries.

Keywords: cross-laminated-timber (CLT), industry breakthrough, student housing, timber market

Procedia PDF Downloads 225
7370 3D Electrode Carrier and its Implications on Retinal Implants

Authors: Diego Luján Villarreal

Abstract:

Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge density

Keywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices

Procedia PDF Downloads 117
7369 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee

Abstract:

Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.

Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration

Procedia PDF Downloads 234
7368 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 148
7367 Environmental Degradation and Mitigation Measures: A Case Study of Nepal

Authors: Megha Raj Regmi

Abstract:

Nepal is a Himalayan country, land-locked and sandwiched between two neighboring mammoths, China and India. Kathmandu, the capital Valley, is a conglomeration of historical and World heritage cities in the central part of Nepal. All the rivers and rivulets that originate from this middle mountain valley, drain into the major river Bagmati, a tributary of the Ganges. Not so long ago the Bagmati, which is sacred to all the Hindu populace, used to be the source of sustenance to the people, and abundant fauna and flora in the Valley and downstream. At present all the sewerage systems within the Valley directly discharge effluent into the streams nearby. The pollutants thus being fed into the tributary streams have rendered the river useless, just as a wastewater drain. Rapid urbanization and absence of reliable wastewater treatment facilities are the major causes of river pollution. Kathmandu, the capital city having a population of one and half million, has only one functional wastewater treatment plant among the seven wastewater treatment plants. The per capita income of Nepal is 1300 US$; the monthly tariff of electricity for the operation of this extended aeration type treatment plant is US$ 700 with subsidy. The deep oxidation ditch of carousel type has been designed for the discharge of 0.20cumec to treat the sewage containing BOD5 of 270 mg/l and the COD of 1150 mg/l to maintain a modicum of treated water flow in the sacred stretch around the Pashupatinath temple. A model Eco toilet has been designed such that urine and faeces get separated. The faeces are then dehydrated and decomposed with and without solar radiation. As against the normal condition, where the faecesare to be used as soil conditioner in the model with solar radiation, the faeces got decomposed in forty eight days period. The diluted urine with eight parts of water is used as fertilizer for agriculture. Also from the observation by many people on a cluster of the pilot project, annually per person recovered value of N (Nitrogen), P (Phosphorous) and K (Potassium) was found to be 5kg, 0.399Kg, 1.099 Kg, respectively. The combination of decomposed excreta thus received is expected to suffice the local fertilizer needs. The study thus found the Eco toilets to have a clear advantage over the traditional water borne sanitation. This paper presents an in-depth review of the present scenario of the water supply situation of Nepal. Similarly, this paper deals with different types of Eco toilets, their performance and feasibility in the context of Nepal, based on complete laboratory analysis and regular monitoring, as well as river restoration to a healthy state, including biogas generation from excreta.

Keywords: bio- gas public toilet, low cost technology, sustainable sanitation, total sanitation

Procedia PDF Downloads 6
7366 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures

Authors: H. Naderpour, R. C. Barros, S. M. Khatami

Abstract:

Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.

Keywords: pounding, impact, dissipated energy, coefficient of restitution

Procedia PDF Downloads 359
7365 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis

Authors: Hyun-Woo Cho

Abstract:

Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.

Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques

Procedia PDF Downloads 392
7364 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

Authors: M. Nemer, E. I. Konukseven

Abstract:

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation

Procedia PDF Downloads 286
7363 Chromium Adsorption by Modified Wood

Authors: I. Domingos, B. Esteves, A. Figueirinha, Luísa P. Cruz-Lopes, J. Ferreira, H. Pereira

Abstract:

Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies.

Keywords: adsorption, chromium, heat treatment, wood modification

Procedia PDF Downloads 502
7362 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 217
7361 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 168
7360 Effect of Storage Time on the Properties of Seeds, Oil and Biodiesel from Reutealis trisperma

Authors: Muhammad Yusuf Abduh, Syaripudin, Laksmitha Dyanie, Robert Manurung

Abstract:

The time profile of moisture content for different fractions (PT-3, PT-7, PT-14, NPT-21) of trisperma seeds (Reutealis trisperma) was determined at a relative humidity of 67% and 27°C for a four months period. The diffusion coefficient of water in the trisperma seeds was determined using an analytical solution of instationary diffusion equation and used to model the moisture content in the seeds. The total oil content of the seeds and the acid value of the extracted oil from the stored seeds were periodically measured for four months. The acid value of the extracted oil from the stored seeds increased for all conditions (1.1 to 2.8 mg KOH/g for PT-3, 1.9 to 9.9 mg KOH/g for PT-7, 3.4 to 11.6 mg KOH/g for PT-14 and 4.7 to 25.4 mg KOH/g for NPT-21). The acid value of trisperma oil and biodiesel that has been stored for four months (27°C, closed container) was also determined. Upon storage, the acid value of trisperma oil and biodiesel only slightly increased from 1.1 to 1.3 mg KOH/g and 0.4 to 0.43 mg KOH/g, respectively.

Keywords: acid value, biodiesel, moisture content, Reutealis trisperma, storage

Procedia PDF Downloads 295
7359 Haematological Indices of West African Dwarf Goats Fed Diets Containing Varying Levels of Sodium Humate

Authors: Ubu Isaiah, Gambo D.

Abstract:

Haematological studies are an important diagnosis of nutritional studies. The study investigated the haematological parameters of West African Dwarf (WAD) goats fed a diet containing different levels of sodium humate. Twenty (20) WAD bucks weighing between 8.154 ± 0.340 kg were used for this study. The bucks were randomly allotted to four dietary treatments containing 0, 5, 10, and 15 g/kg diet of sodium humate laid out as a completely randomized design. Data on haematological parameters were obtained and statistically analysed using the generalized linear model (GLM) of the Statistical Package for Social Sciences (SPSS) (version 23). Results showed that sodium humate supplementation (p <0.05) has no significant effect on Neutrophils, Eosinophil, Basophils, and Monocytes, respectively. It was recommended up to 15 g/kg diet supplementation of sodium humate sufficiently enhance the performance of WAD goats as well the improving their haematological indices.

Keywords: haematological indices, goat, sodium humate

Procedia PDF Downloads 102
7358 The Effect of Improvement Programs in the Mean Time to Repair and in the Mean Time between Failures on Overall Lead Time: A Simulation Using the System Dynamics-Factory Physics Model

Authors: Marcel Heimar Ribeiro Utiyama, Fernanda Caveiro Correia, Dario Henrique Alliprandini

Abstract:

The importance of the correct allocation of improvement programs is of growing interest in recent years. Due to their limited resources, companies must ensure that their financial resources are directed to the correct workstations in order to be the most effective and survive facing the strong competition. However, to our best knowledge, the literature about allocation of improvement programs does not analyze in depth this problem when the flow shop process has two capacity constrained resources. This is a research gap which is deeply studied in this work. The purpose of this work is to identify the best strategy to allocate improvement programs in a flow shop with two capacity constrained resources. Data were collected from a flow shop process with seven workstations in an industrial control and automation company, which process 13.690 units on average per month. The data were used to conduct a simulation with the System Dynamics-Factory Physics model. The main variables considered, due to their importance on lead time reduction, were the mean time between failures and the mean time to repair. The lead time reduction was the output measure of the simulations. Ten different strategies were created: (i) focused time to repair improvement, (ii) focused time between failures improvement, (iii) distributed time to repair improvement, (iv) distributed time between failures improvement, (v) focused time to repair and time between failures improvement, (vi) distributed time to repair and between failures improvement, (vii) hybrid time to repair improvement, (viii) hybrid time between failures improvements, (ix) time to repair improvement strategy towards the two capacity constrained resources, (x) time between failures improvement strategy towards the two capacity constrained resources. The ten strategies tested are variations of the three main strategies for improvement programs named focused, distributed and hybrid. Several comparisons among the effect of the ten strategies in lead time reduction were performed. The results indicated that for the flow shop analyzed, the focused strategies delivered the best results. When it is not possible to perform a large investment on the capacity constrained resources, companies should use hybrid approaches. An important contribution to the academy is the hybrid approach, which proposes a new way to direct the efforts of improvements. In addition, the study in a flow shop with two strong capacity constrained resources (more than 95% of utilization) is an important contribution to the literature. Another important contribution is the problem of allocation with two CCRs and the possibility of having floating capacity constrained resources. The results provided the best improvement strategies considering the different strategies of allocation of improvement programs and different positions of the capacity constrained resources. Finally, it is possible to state that both strategies, hybrid time to repair improvement and hybrid time between failures improvement, delivered best results compared to the respective distributed strategies. The main limitations of this study are mainly regarding the flow shop analyzed. Future work can further investigate different flow shop configurations like a varying number of workstations, different number of products or even different positions of the two capacity constrained resources.

Keywords: allocation of improvement programs, capacity constrained resource, hybrid strategy, lead time, mean time to repair, mean time between failures

Procedia PDF Downloads 126
7357 An Exploitation of Electrical Sensors in Monitoring Pool Chlorination

Authors: Fahad Alamoudi, Yaser Miaji

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, water slides, and more recently, hydrotherapy and wave pools. In this research, a few simple equipment is used for test, detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, Rio 12HF and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates, the lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 366
7356 Discursivity and Creativity: Implementing Pigrum's Multi-Mode Transitional Practices in Upper Division Creative Production Courses

Authors: Michael Filimowicz, Veronika Tzankova

Abstract:

This paper discusses the practical implementation of Derek Pigrum’s multi-mode model of transitional practices in the context of upper division production courses in an interaction design curriculum. The notion of teaching creativity directly was connected to a general notion of “discursivity” by which is meant students’ overall ability to discuss, describe, and engage in dialogue about their creative work. We present a study of how Pigrum’s transitional modes can be mapped onto a variety of course activities, and discuss challenges and outcomes of directly engaging student discursivity in their creative output.

Keywords: teaching creativity, multi-mode transitional practices, discursivity, rich dialogue, art and design education, pedagogy

Procedia PDF Downloads 505
7355 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 172
7354 Packet Analysis in Network Forensics: Insights, Tools, and Case Study

Authors: Dalal Nasser Fathi, Amal Saud Al-Mutairi, Mada Hamed Al-Towairqi, Enas Fawzi Khairallah

Abstract:

Network forensics is essential for investigating cyber incidents and detecting malicious activities by analyzing network traffic, with a focus on packet and protocol data. This process involves capturing, filtering, and examining network data to identify patterns and signs of attacks. Packet analysis, a core technique in this field, provides insights into the origins of data, the protocols used, and any suspicious payloads, which aids in detecting malicious activity. This paper explores network forensics, providing guidance for the analyst on what to look for and identifying attack sites guided by the seven layers of the OSI model. Additionally, it explains the most commonly used tools in network forensics and demonstrates a practical example using Wireshark.

Keywords: network forensic, packet analysis, Wireshark tools, forensic investigation, digital evidence

Procedia PDF Downloads 15
7353 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 121
7352 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity

Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim

Abstract:

Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.

Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin

Procedia PDF Downloads 238
7351 The Effect of Non-Normality on CB-SEM and PLS-SEM Path Estimates

Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim

Abstract:

The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are non-normal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and non-normality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under non-normality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.

Keywords: CB-SEM, Monte Carlo simulation, normality conditions, non-normality, PLS-SEM

Procedia PDF Downloads 417
7350 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models

Procedia PDF Downloads 381
7349 Urban Park Characteristics Defining Avian Community Structure

Authors: Deepti Kumari, Upamanyu Hore

Abstract:

Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.

Keywords: diversity, feeding guild, urban park, urbanization intensity

Procedia PDF Downloads 127
7348 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 134
7347 A Study of Mandarin Ba Constructions from the Perspective of Event Structure

Authors: Changyin Zhou

Abstract:

Ba constructions are a special type of constructions in Chinese. Their syntactic behaviors are closely related to their event structural properties. The existing study which treats the semantic function of Ba as causative meets difficulty in treating the discrepancy between Ba constructions and their corresponding constructions without Ba in expressing causativity. This paper holds that Ba in Ba constructions is a functional category expressing affectedness. The affectedness expressed by Ba can be positive or negative. The functional category Ba expressing negative affectedness has the semantic property of being 'expected'. The precondition of Ba construction is the boundedness of the event concerned. This paper, holding the parallelism between motion events and change-of-state events, proposes a syntactic model based on the notions of boundedness and affectedness, discusses the transformations between Ba constructions and the related resultative constructions, and derivates the various Ba constructions concerned.

Keywords: affectedness, Ba constructions, boundedness, event structure, resultative constructions

Procedia PDF Downloads 423
7346 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 203