Search results for: two liquid layers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3248

Search results for: two liquid layers

2318 Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors

Authors: H. Fekhar

Abstract:

Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error.

Keywords: microcontrollers, sensors, graphic liquid cristal display, protocol, temperature, pressure

Procedia PDF Downloads 452
2317 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia

Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman

Abstract:

The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.

Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development

Procedia PDF Downloads 425
2316 Evaluation of the Appropriateness of Common Oxidants for Ruthenium (II) Chemiluminescence in a Microfluidic Detection Device Coupled to Microbore High Performance Liquid Chromatography for the Analysis of Drugs in Formulations and Biological Fluids

Authors: Afsal Mohammed Kadavilpparampu, Haider A. J. Al Lawati, Fakhr Eldin O. Suliman, Salma M. Z. Al Kindy

Abstract:

In this work, we evaluated the appropriateness of various oxidants that can be used potentially with Ru(bipy)32+ CL system while performing CL detection in a microfluidic device using eight common active pharmaceutical ingredients- ciprofloxacin, hydrochlorothiazide, norfloxacin, buspirone, fexofenadine, cetirizine, codeine, and dextromethorphan. This is because, microfludics have very small channel volume and the residence time is also very short. Hence, a highly efficient oxidant is required for on-chip CL detection to obtain analytically acceptable CL emission. Three common oxidants were evaluated, lead dioxide, cerium ammonium sulphate and ammonium peroxydisulphate. Results obtained showed that ammonium peroxydisulphate is the most appropriate oxidant which can be used in microfluidic setup and all the tested analyte give strong CL emission while using this oxidant. We also found that Ru(bipy)33+ generated off-line by oxidizing [Ru(bipy)3]Cl2.6H2O in acetonitrile under acidic condition with lead dioxide was stable for more than 72 hrs. A highly sensitive microbore HPLC- CL method using ammonium peroxydisulphate as an oxidant in a microfluidic on-chip CL detection has been developed for the analyses of fixed-dose combinations of pseudoephedrine (PSE), fexofenadine (FEX) and cetirizine (CIT) in biological fluids and pharmaceutical formulations with minimum sample pre-treatment.

Keywords: oxidants, microbore High Performance Liquid Chromatography, chemiluminescence, microfluidics

Procedia PDF Downloads 432
2315 An Easy Approach for Fabrication of Macroporous Apatite-Based Bone Cement Used As Potential Trabecular Bone Substitute

Authors: Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese

Abstract:

The apatite-based, i.e., calcium-deficient hydroxyapatite (CDHAp) bone cement is well-known potential bone graft/substitute in orthopaedics due to its similar chemical composition with natural bone minerals. Therefore, an easy approach was attempted to fabricate the apatite-based (CDHAp) bone cement with improved injectability, bioresorbability, and macroporosity. In this study, the desired bone cement was developed by mixing the solid phase (consisting of wet chemically synthesized nanocrystalline hydroxyapatite and commercially available (synthetic) tricalcium phosphate) and the liquid phase (consisting of cement binding accelerator with few biopolymers in a dilute acidic solution) along with a liquid porogen as polysorbate or a solid porogen as mannitol (for comparison) in an optimized liquid-to-powder ratio. The fabricated cement sets within clinically preferred setting time (≤20 minutes) are better injectable (>70%) and also stable at ~7.3-7.4 (physiological pH). The CDHAp phased bone cement was resulted by immersing the fabricated after-set cement in phosphate buffer solution and other similar artificial body fluids and incubated at physiological conditions for seven days, confirmed through the X-ray diffraction and Fourier transform-infrared spectroscopy analyses. The so-formed synthetic apatite-based bone cement holds the acceptable compressive strength (within the range of trabecular bone) with average interconnected pores size falls in a macropores range (~50-200μm) inside the cement, verified by scanning electron microscopy (SEM), mercury intrusion porosimetry and micro-CT analysis techniques. Also, it is biodegradable (degrades ~19-22% within 10-12 weeks) when incubated in artificial body fluids under physiological conditions. The biocompatibility study of the bone cement, when incubated with MG63 cells, shows a significant increase in the cell viability after 3rd day of incubation compared with the control, and the cells were well-attached and spread completely on the surface of the bone cement, confirmed through SEM and fluorescence microscopy analyses. With this all, we can conclude that the developed synthetic macroporous apatite-based bone cement may have the potential to become promising material used as a trabecular bone substitute.

Keywords: calcium deficient hydroxyapatite, synthetic apatite-based bone cement, injectability, macroporosity, trabecular bone substitute

Procedia PDF Downloads 76
2314 Regeneration of a Liquid Desiccant Using Membrane Distillation to Unlock Coastal Desert Agriculture Potential

Authors: Kimberly J. Cribbs, Ryan M. Lefers, TorOve Leiknes, Noreddine Ghaffour

Abstract:

In Gulf Cooperation Council (GCC) countries, domestic agriculture is hindered by a lack of freshwater, poor soil quality, and ambient temperatures unsuitable for cultivation resulting in a heavy reliance on imported food. Attempts to minimize the risk of food insecurity by growing crops domestically creates a significant demand on limited freshwater resources in this region. Cultivating food in a greenhouse allows some of these challenges, such as poor soil quality and temperatures unsuitable for cultivation, to be overcome. One of the most common methods for greenhouse cooling is evaporative cooling. This method cools the air by the evaporation of water and requires a large amount of water relative to that needed for plant growth and air with a low relative humidity. Considering that much of the population in GCC countries live within 100 km of a coast and that sea water can be utilized for evaporative cooling, coastal agriculture could reduce the risk of food insecurity and water demand. Unfortunately, coastal regions tend to experience both high temperatures and high relative humidity causing evaporative cooling by itself to be inadequate. Therefore, dehumidification is needed prior to utilizing evaporative cooling. Utilizing a liquid desiccant for air dehumidification is promising, but the desiccant regeneration to retain its dehumidification potential remains a significant obstacle for the adoption of this technology. This project studied the regeneration of a magnesium chloride (MgCl₂) desiccant solution from 20wt% to 30wt% by direct contact membrane distillation (DCMD) and explored the possibility of using the recovered water for irrigation. Two 0.2 µm hydrophobic PTFE membranes were tested at feed temperatures of 80, 70, and 60°C and with a permeate temperature of 20°C. It was observed that the permeate flux increases as the difference between the feed and coolant temperature increases and also as the feed concentration decreases. At 21wt% the permeate flux was 34,17, and 14 L m⁻² h⁻¹ for feed temperatures of 80, 70, and 60°C, respectively. Salt rejection decreased overtime; however, it remained greater than 99.9% over an experimental time span of 10 hours. The results show that DCMD can successfully regenerate the magnesium chloride desiccant solution.

Keywords: agriculture, direct contact membrane distillation, GCC countries, liquid desiccant, water recovery

Procedia PDF Downloads 140
2313 Experimental Characterization of Anti-Icing System and Accretion of Re-Emitted Droplets on Turbojet Engine Blades

Authors: Guillaume Linassier, Morgan Balland, Hugo Pervier, Marie Pervier, David Hammond

Abstract:

Atmospheric icing for turbojet is caused by ingestion of super-cooled water droplets. To prevent operability risks, manufacturer can implement ice protection systems. Thermal systems are commonly used for this purpose, but their activation can cause the formation of a water liquid film, that can freeze downstream the heated surface or even on other components. In the framework of STORM, a European project dedicated to icing physics in turbojet engines, a cascade rig representative of engine inlet blades was built and tested in an icing wind tunnel. This mock-up integrates two rows of blades, the upstream one being anti-iced using an electro-thermal device the downstream one being unheated. Under icing conditions, the anti-icing system is activated and set at power level to observe a liquid film on the surface and droplet re-emission at the trailing edge. These re-emitted droplets will impinge on the downstream row and contribute to ice accretion. A complete experimental database was generated, including the characterization of ice accretion shapes, and the characterization of electro-thermal anti-icing system (power limit for apparition of the runback water or ice accretion). These data will be used for validation of numerical tools for modeling thermal anti-icing systems in the scope of engine application, as well as validation of re-emission droplets model for stator parts.

Keywords: turbomachine, anti-icing, cascade rig, runback water

Procedia PDF Downloads 175
2312 A Comparison of Direct Water Injection with Membrane Humidifier for Proton Exchange Membrane Fuel Cells Humification

Authors: Flavien Marteau, Pedro Affonso Nóbrega, Pascal Biwole, Nicolas Autrusson, Iona De Bievre, Christian Beauger

Abstract:

Effective water management is essential for the optimal performance of fuel cells. For this reason, many vehicle systems use a membrane humidifier, a passive device that humidifies the air before the cathode inlet. Although they offer good performance, humidifiers are voluminous, costly, and fragile, hence the desire to find an alternative. Direct water injection could be an option, although this method lacks maturity. It consists of injecting liquid water as a spray in the dry heated air coming out from the compressor. This work focuses on the evaluation of direct water injection and its performance compared to the membrane humidifier selected as a reference. Two architectures were experimentally tested to humidify an industrial 2 kW short stack made up of 20 cells of 150 cm² each. For the reference architecture, the inlet air is humidified with a commercial membrane humidifier. For the direct water injection architecture, a pneumatic nozzle was selected to generate a fine spray in the air flow with a Sauter mean diameter of about 20 μm. Initial performance was compared over the entire range of current based on polarisation curves. Then, the influence of various parameters impacting water management was studied, such as the temperature, the gas stoichiometry, and the water injection flow rate. The experimental results obtained confirm the possibility of humidifying the fuel cell using direct water injection. This study, however shows the limits of this humidification method, the mean cell voltage being significantly lower in some operating conditions with direct water injection than with the membrane humidifier. The voltage drop reaches 30 mV per cell (4 %) at 1 A/cm² (1,8 bara, 80 °C) and increases in more demanding humidification conditions. It is noteworthy that the heat of compression available is not enough to evaporate all the injected liquid water in the case of DWI, resulting in a mix of liquid and vapour water entering the fuel cell, whereas only vapour is present with the humidifier. Variation of the injection flow rate shows that part of the injected water is useless for humidification and seems to cross channels without reaching the membrane. The stack was successfully humidified thanks to direct water injection. Nevertheless, our work shows that its implementation requires substantial adaptations and may reduce the fuel cell stack performance when compared to conventional membrane humidifiers, but opportunities for optimisation have been identified.

Keywords: cathode humidification, direct water injection, membrane humidifier, proton exchange membrane fuel cell

Procedia PDF Downloads 29
2311 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation

Procedia PDF Downloads 125
2310 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: electrical conductivity, montmorillonite, nanocomposite, organoclay, polycaprolactone

Procedia PDF Downloads 369
2309 Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials

Authors: Adjmal Ghaur, Christoph Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du , Laurin Profanter, Tobias Placke, Martin Winter

Abstract:

In recent years, lithium-ion batteries (LIBs)are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various siliconactive materials as alternative negative electrodes to replace graphite (372 mAh g⁻¹)due to their high theoretical gravimetric capacity (4200mAh g⁻¹). However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has poor electronicconductivity which negatively impacts the long-term performance and preventshigh silicon contents from practical application. Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process. To compensate for the volume changes, alleviate pulverization, and maintain high electronicconductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail, electrochemical performance measurements in pouch full-cells(NCM523||SiOx/C), supressing gas formation properties, and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance.

Keywords: silicon, phosphazene, solid electrolyte interphase, electrolyte, gasmeasurements

Procedia PDF Downloads 155
2308 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5×37.5 mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15- 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68℃ when the heat input was at 40 W which is much lower than the recommended computer chips limit temperature of no more than 85℃ and hence the performance of the CPU is enhanced.

Keywords: chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid

Procedia PDF Downloads 256
2307 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 135
2306 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 477
2305 Conditions of the Anaerobic Digestion of Biomass

Authors: N. Boontian

Abstract:

Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solid-state anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources.

Keywords: anaerobic digestion, lignocellulosic biomass, methane production, optimization, pretreatment

Procedia PDF Downloads 373
2304 Loss of the Skin Barrier after Dermal Application of the Low Molecular Methyl Siloxanes: Volatile Methyl Siloxanes, VMS Silicones

Authors: D. Glamowska, K. Szymkowska, K. Mojsiewicz- Pieńkowska, K. Cal, Z. Jankowski

Abstract:

Introduction: The integrity of the outermost layer of skin (stratum corneum) is vital to the penetration of various compounds, including toxic substances. Barrier function of skin depends of its structure. The barrier function of the stratum corneum is provided by patterned lipid lamellae (binlayer). However, a lot of substances, including the low molecular methyl siloxanes (volatile methyl siloxanes, VMS) have an impact on alteration the skin barrier due to damage of stratum corneum structure. VMS belong to silicones. They are widely used in the pharmaceutical as well as cosmetic industry. Silicones fulfill the role of ingredient or excipient in medicinal products and the excipient in personal care products. Due to the significant human exposure to this group of compounds, an important aspect is toxicology of the compounds and safety assessment of products. Silicones in general opinion are considered as a non-toxic substances, but there are some data about their negative effect on living organisms through the inhaled or oral application. However, the transdermal route has not been described in the literature as a possible alternative route of penetration. The aim of the study was to verify the possibility of penetration of the stratum corneum, further permeation into the deeper layers of the skin (epidermis and dermis) as well as to the fluid acceptor by VMS. Methods: Research methodology was developed based on the OECD and WHO guidelines. In ex-vivo study, the fluorescence microscope and ATR FT-IR spectroscopy was used. The Franz- type diffusion cells were used to application of the VMS on the sample of human skin (A=0.65 cm) for 24h. The stratum corneum at the application site was tape-stripped. After separation of epidermis, relevant dyes: fluorescein, sulforhodamine B, rhodamine B hexyl ester were put on and observations were carried in the microscope. To confirm the penetration and permeation of the cyclic or linear VMS and thus the presence of silicone in the individual layers of the skin, spectra ATR FT-IR of the sample after application of silicone and H2O (control sample) were recorded. The research included comparison of the intesity of bands in characteristic positions for silicones (1263 cm-1, 1052 cm-1 and 800 cm-1). Results: and Conclusions The results present that cyclic and linear VMS are able to overcome the barrier of the skin. Influence of them on damage of corneocytes of the stratum corneum was observed. This phenomenon was due to distinct disturbances in the lipid structure of the stratum corneum. The presence of cyclic and linear VMS were identified in the stratum corneum, epidermis as well as in the dermis by both fluorescence microscope and ATR FT-IR spectroscopy. This confirms that the cyclic and linear VMS can penetrate to stratum corneum and permeate through the human skin layers. Apart from this they cause changes in the structure of the skin. Results show to possible absorption into the blood and lymphathic vessels by the VMS with linear and cyclic structure.

Keywords: low molecular methyl siloxanes, volatile methyl siloxanes, linear and cyclic siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 333
2303 Geopolymer Concrete: A Review of Properties, Applications and Limitations

Authors: Abbas Ahmed Albu Shaqraa

Abstract:

The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.

Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength

Procedia PDF Downloads 206
2302 Modifications in Design of Lap Joint of Fiber Metal Laminates

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The continuous development and exploitation of materials and designs have diverted the attention of the world towards the use of robust composite materials known as fiber-metal laminates in many high-performance applications. The hybrid structure of fiber metal laminates makes them a material of choice for various applications such as aircraft skin panels, fuselage floorings, door panels and other load bearing applications. The synergistic effect of properties of metals and fibers reinforced laminates are responsible for their high damage tolerance as the metal element provides better fatigue and impact properties, while high stiffness and better corrosion properties are inherited from the fiber reinforced matrix systems. They are mostly used as a layered structure in different joint configurations such as lap and but joints. The FML layers are usually bonded with each other using either mechanical fasteners or adhesive bonds. This research work is also focused on modification of an adhesive bonded joint as a single lap joint of carbon fibers based CARALL FML has been modified to increase interlaminar shear strength and avoid delamination. For this purpose different joint modification techniques such as the introduction of spews and shoulder to modify the bond shape and use of nanofillers such as carbon nano-tubes as a reinforcement in the adhesive materials, have been utilized to improve shear strength of lap joint of the adhesively bonded FML layers. Both the simulation and experimental results showed that lap joint with spews and shoulders configuration have better properties due to stress distribution over a large area at the corner of the joint. The introduction of carbon nanotubes has also shown a positive effect on shear stress and joint strength as they act as reinforcement in the adhesive bond material.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 291
2301 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 161
2300 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 88
2299 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 47
2298 Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique

Authors: Jayaraman Muniyappan, Bachchan Kr Mishra, Gautam Salkar, Swetha Manian Sridhar

Abstract:

Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses.

Keywords: cure kinetics, process-induced stresses, thermal expansion coefficient, vacuum assisted resin transfer molding

Procedia PDF Downloads 228
2297 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract

Authors: Kenia Martínez, Geniel Talavera, Juan Alonso

Abstract:

Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.

Keywords: antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content

Procedia PDF Downloads 257
2296 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 436
2295 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 404
2294 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 314
2293 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 322
2292 Analysis of Fish Preservation Methods for Traditional Fishermen Boat

Authors: Kusno Kamil, Andi Asni, Sungkono

Abstract:

According to a report of the World Food and Agriculture Agency (FAO): the post-harvest fish losses in Indonesia reaches 30 percent from 170 trillion rupiahs of marine fisheries reserves, then the potential loss reaches 51 trillion rupiahs (end of 2016 data). This condition is caused by traditionally vulnerable fish catches damaged due to disruption of the cold chain of preservation. The physical and chemical changes in fish flesh increase rapidly, especially if exposed to the scorching heat in the middle of the sea, exacerbated by the low awareness of catch hygiene; many unclean catches which contain blood are often treated without special attention and mixed with freshly caught fish, thereby increasing the potential for faster fish spoilage. This background encourages research on traditional fisherman catch preservation methods that aim to find the best and most affordable methods and/or combinations of fish preservation methods so that they can help fishermen increase their fishing duration without worrying that their catch will be damaged, thereby reducing their economic value when returning to the beach to sell their catches. This goal is expected to be achieved through experimental methods of treatment of fresh fish catches in containers with the addition of anti-bacterial copper, liquid smoke solution, and the use of vacuum containers. The other three treatments combined the three previous treatment variables with an electrically powered cooler (temperature 0~4 ᵒC). As a control specimen, the untreated fresh fish (placed in the open air and in the refrigerator) were also prepared for comparison for 1, 3, and 6 days. To test the level of freshness of fish for each treatment, physical observations were used, which were complemented by tests for bacterial content in a trusted laboratory. The content of copper (Cu) in fish meat (which is suspected of having a negative impact on consumers) was also part of the examination on the 6th day of experimentation. The results of physical observations on the test specimens (organoleptic method) showed that preservation assisted by the use of coolers was still better for all treatment variables. The specimens, without cooling, sequentially showed that the best preservation effectiveness was the addition of copper plates, the use of vacuum containers, and then liquid smoke immersion. Especially for liquid smoke, soaking for 6 days of preservation makes the fish meat soft and easy to crumble, even though it doesn't have a bad odor. The visual observation was then complemented by the results of testing the amount of growth (or retardation) of putrefactive bacteria in each treatment of test specimens within similar observation periods. Laboratory measurements report that the minimum amount of putrefactive bacteria achieved by preservation treatment combining cooler with liquid smoke (sample A+), then cooler only (D+), copper layer inside cooler (B+), vacuum container inside cooler (C+), respectively. Other treatments in open air produced a hundred times more putrefactive bacteria. In addition, treatment of the copper layer contaminated the preserved fresh fish more than a thousand times bigger compared to the initial amount, from 0.69 to 1241.68 µg/g.

Keywords: fish, preservation, traditional, fishermen, boat

Procedia PDF Downloads 60
2291 Vapour Liquid Equilibrium Measurement of CO₂ Absorption in Aqueous 2-Aminoethylpiperazine (AEP)

Authors: Anirban Dey, Sukanta Kumar Dash, Bishnupada Mandal

Abstract:

Carbondioxide (CO2) is a major greenhouse gas responsible for global warming and fossil fuel power plants are the main emitting sources. Therefore the capture of CO2 is essential to maintain the emission levels according to the standards. Carbon capture and storage (CCS) is considered as an important option for stabilization of atmospheric greenhouse gases and minimizing global warming effects. There are three approaches towards CCS: Pre combustion capture where carbon is removed from the fuel prior to combustion, Oxy-fuel combustion, where coal is combusted with oxygen instead of air and Post combustion capture where the fossil fuel is combusted to produce energy and CO2 is removed from the flue gases left after the combustion process. Post combustion technology offers some advantage as existing combustion technologies can still be used without adopting major changes on them. A number of separation processes could be utilized part of post –combustion capture technology. These include (a) Physical absorption (b) Chemical absorption (c) Membrane separation (d) Adsorption. Chemical absorption is one of the most extensively used technologies for large scale CO2 capture systems. The industrially important solvents used are primary amines like Monoethanolamine (MEA) and Diglycolamine (DGA), secondary amines like diethanolamine (DEA) and Diisopropanolamine (DIPA) and tertiary amines like methyldiethanolamine (MDEA) and Triethanolamine (TEA). Primary and secondary amines react fast and directly with CO2 to form stable carbamates while Tertiary amines do not react directly with CO2 as in aqueous solution they catalyzes the hydrolysis of CO2 to form a bicarbonate ion and a protonated amine. Concentrated Piperazine (PZ) has been proposed as a better solvent as well as activator for CO2 capture from flue gas with a 10 % energy benefit compared to conventional amines such as MEA. However, the application of concentrated PZ is limited due to its low solubility in water at low temperature and lean CO2 loading. So following the performance of PZ its derivative 2-Aminoethyl piperazine (AEP) which is a cyclic amine can be explored as an activator towards the absorption of CO2. Vapour liquid equilibrium (VLE) in CO2 capture systems is an important factor for the design of separation equipment and gas treating processes. For proper thermodynamic modeling accurate equilibrium data for the solvent system over a wide range of temperatures, pressure and composition is essential. The present work focuses on the determination of VLE data for (AEP + H2O) system at 40 °C for various composition range.

Keywords: absorption, aminoethyl piperazine, carbondioxide, vapour liquid equilibrium

Procedia PDF Downloads 254
2290 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band

Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz

Abstract:

This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.

Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi

Procedia PDF Downloads 105
2289 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution

Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai

Abstract:

Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.

Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning

Procedia PDF Downloads 361