Search results for: service networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6193

Search results for: service networks

5263 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 72
5262 Attitude and Perception of Non-emergency Vehicle Drivers on Roads Towards Medical Emergency Vehicles: The Role of Empathy and Pro-Social Skills

Authors: Purnima K Bajre, Rujula Talloo

Abstract:

A variety of vehicles are driven on roads such as private vehicles, commercial vehicles, public vehicles, and emergency service vehicles (EMV). Drivers driving different vehicles can have attitude differences towards emergency service vehicles which in turn affects their likelihood to give way to them. The present review aims to understand the factors that mediate this yielding behavior of drivers towards EMVs. Through extensive review of available literature, factors such as effects of lights and sirens, cognitive load, age of the driver, driving general experience, traffic load, drivers’ experience and training with EMVs and drivers’ attitude towards EMV drivers, have emerged as mediating factors. Whereas cognitive load is the most researched area and is observed to be associated negatively with on road drivers’ attitudes towards EMVs, there is a paucity of research to understand the relationships between empathy, pro-social skills, and on road drivers’ attitude towards EMVs.

Keywords: cognitive load, emergency service vehicle, empathy, traffic load

Procedia PDF Downloads 31
5261 An Experimental Testbed Using Virtual Containers for Distributed Systems

Authors: Parth Patel, Ying Zhu

Abstract:

Distributed systems have become ubiquitous, and they continue their growth through a range of services. With advances in resource virtualization technology such as Virtual Machines (VM) and software containers, developers no longer require high-end servers to test and develop distributed software. Even in commercial production, virtualization has streamlined the process of rapid deployment and service management. This paper introduces a distributed systems testbed that utilizes virtualization to enable distributed systems development on commodity computers. The testbed can be used to develop new services, implement theoretical distributed systems concepts for understanding, and experiment with virtual network topologies. We show its versatility through two case studies that utilize the testbed for implementing a theoretical algorithm and developing our own methodology to find high-risk edges. The results of using the testbed for these use cases have proven the effectiveness and versatility of this testbed across a range of scenarios.

Keywords: distributed systems, experimental testbed, peer-to-peer networks, virtual container technology

Procedia PDF Downloads 146
5260 The Effect of a New Reimbursement Policy for Discharge Planning Service

Authors: Chueh Chi-An, Chan Hui-Ya

Abstract:

Background and Aim: National Health Insurance (NHI) Administration released a new reimbursement policy for hospital patients who received a superior discharge plan on April 1, 2016. Each case could be claimed 1,500 points for fee-of service with related documents. The policy is considered a solution to help reducing the crowding in the emergency department, the length of stay of hospital, unplanned readmission rate and unplanned ER visit. This study aim is to explore the effect of the new reimbursement policy for discharge planning service in a medical center. Methods: The discharge team explained to general wards the new policy and encouraged early assessment, communication and connecting to community care for patients. They stated the benefit from the policy and asked documenting for reimbursement claiming from April to May 2016. The imbursement fee of NHI declaration from June 2015 to October 2017 was collected. The indicators included hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction were analyzed after the policy implemented. Results: The results showed that the amount of service declaration was increasing from 2 cases in February 2016 to 110 cases in October 2017, the application rate was increasing from 0.029% to 1.576% of all inpatient cases, and the average payment from NHI was around 148,500 NT dollars per month in 2017. There are no significant differences in the indicators among hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction. Conclusion: To provide a good discharge plan require a specialized case manager, the new reimbursement policy is too complicated and the total fee-of-service hospital could claim is too limited to hiring one. The results suggest more strategies combine with the new reimbursement policy will be needed.

Keywords: discharge planning, reimbursement, unplanned ER visit, readmission rate

Procedia PDF Downloads 174
5259 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 173
5258 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 305
5257 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks

Procedia PDF Downloads 221
5256 Banking and Accounting Analysis Researches Effect on Environment

Authors: Marina Magdy Naguib Karas

Abstract:

New methods of providing banking services to the customer have been introduced, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a new distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time-consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking.

Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise development

Procedia PDF Downloads 50
5255 Cooperative Learning: A Case Study on Teamwork through Community Service Project

Authors: Priyadharshini Ahrumugam

Abstract:

Cooperative groups through much research have been recognized to churn remarkable achievements instead of solitary or individualistic efforts. Based on Johnson and Johnson’s model of cooperative learning, the five key components of cooperation are positive interdependence, face-to-face promotive interaction, individual accountability, social skills and group processing. In 2011, the Malaysian Ministry of Higher Education (MOHE) introduced the Holistic Student Development policy with the aim to develop morally sound individuals equipped with lifelong learning skills. The Community Service project was included in the improvement initiative. The purpose of this study is to assess the relationship of team-based learning in facilitating particularly students’ positive interdependence and face-to-face promotive interaction. The research methods involve in-depth interviews with the team leaders and selected team members, and a content analysis of the undergraduate students’ reflective journals. A significant positive relationship was found between students’ progressive outlook towards teamwork and the highlighted two components. The key findings show that students have gained in their individual learning and work results through teamwork and interaction with other students. The inclusion of Community Service as a MOHE subject resonates with cooperative learning methods that enhances supportive relationships and develops students’ social skills together with their professional skills.

Keywords: community service, cooperative learning, positive interdependence, teamwork

Procedia PDF Downloads 309
5254 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 206
5253 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks

Authors: Mehdi Assefi, Keihan Hataminezhad

Abstract:

One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.

Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient

Procedia PDF Downloads 290
5252 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 332
5251 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
5250 The Positive Impact of Wheelchair Service Provision on the Health and Overall Satisfaction of Wheelchair Users with the Devices

Authors: Archil Undilashvili, Ketevan Stvilia, Dustin Gilbreath, Giorgi Dzneladze, Gordon Charchward

Abstract:

Introduction: In recent years, diverse types of wheelchairs, both local production and imported, have been made available on the Georgian market for wheelchair users. Some types of wheelchairs are sold together with a service package, while the others, including the State Program, Supported locally-produced ones, don’t provide adjustment and maintenance service packages to users. Within the USAID Physical Rehabilitation Project in Georgia, a study was conducted to assess the impact of the wheelchair service provision in line with the WHO guidelines on the health and overall satisfaction of wheelchair users in Georgia. Methodology: A cross-sectional survey was conducted in May 2021. A structured questionnaire was used for telephone interviews that, along with socio-demographic characteristics, included questions for assessment of accessibility, availability, timeliness, cost and quality of wheelchair services received. Out of 1060 individuals listed in the census of wheelchair users, 752 were available for interview, with an actual response rate of 73.4%. 552 wheelchair users (31%) or their caregivers (69%) agreed to participate in the survey. In addition to using descriptive statistics, the study used multivariate matching of wheelchair users who received wheelchair services and who did not (control group). In addition, to evaluate satisfaction with service provision, respondents were asked to assess services. Findings: The majority (67%) of wheelchair users included in the survey were male. The average age of participants was 43. The three most frequently named reasons for using a wheelchair were cerebral palsy (29%), followed by stroke (18%), and amputation (12%). Users have had their current chair for four years on average. Overall, 60% of respondents reported that they were assessed before providing a wheelchair, but only half of them reported that their preferences and needs were considered. Only 13% of respondents had services in line with WHO guidelines and only 22% of wheelchair users had training when they received their current chair. 16% of participants said they had follow-up services, and 41% received adjustment services after receiving the chair. A slight majority (56%) of participants were satisfied with the quality of service provision and the service provision overall. Similarly, 55% were satisfied with the accessibility of service provision. A slightly larger majority (61%) were satisfied with the timeliness of service provision. The matching analysis suggests that users that received services in line with WHO guidelines were more satisfied with their chairs (the difference 17 point/0-100 scale) and they were four percentage points less likely to have health problems attributed to the chair. The regression analysis provides a similar finding of a 21 point increase in satisfaction attributable to services. Conclusion: The provision of wheelchair services in line with WHO guidelines and with follow-up services is likely to have a positive impact on the daily lives of wheelchair users in Georgia. Wheelchair services should be institutionalized as a standard component of wheelchair provision in Georgia.

Keywords: physical rehabilitation, wheelchair users, persons with disabilities, wheelchair production

Procedia PDF Downloads 106
5249 The Making of a Community: Perception versus Reality of Neighborhood Resources

Authors: Kirstie Smith

Abstract:

This paper elucidates the value of neighborhood perception as it contributes to the advancement of well-being for individuals and families within a neighborhood. Through in-depth interviews with city residents, this paper examines the degree to which key stakeholders’ (residents) evaluate their neighborhood and perception of resources and identify, access, and utilize local assets existing in the community. Additionally, the research objective included conducting a community inventory that qualified the community assets and resources of lower-income neighborhoods of a medium-sized industrial city. Analysis of the community’s assets was compared with the interview results to allow for a better understanding of the community’s condition. Community mapping revealed the key informants’ reflections of assets were somewhat validated. In each neighborhood, there were more assets mapped than reported in the interviews. Another chief supposition drawn from this study was the identification of key development partners and social networks that offer the potential to facilitate locally-driven community development. Overall, the participants provided invaluable local knowledge of the perception of neighborhood assets, the well-being of residents, the condition of the community, and suggestions for responding to the challenges of the entire community in order to mobilize the present assets and networks.

Keywords: community mapping, family, resource allocation, social networks

Procedia PDF Downloads 353
5248 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries

Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem

Abstract:

This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 448
5247 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 262
5246 The Influence of Strategic Networks and Logistics Integration on Company Performance among Small and Medium Enterprises

Authors: Jeremiah Madzimure

Abstract:

In order to stay competitive in business and improve performance, Small and Medium Enterprises (SMEs) need to make use of business networking and logistics integration. Strategic networking and logistics integration in business companies have become critical as they allow supplier partnering, exchange of vital information/ access to valuable resources allowing innovation, gaining access to additional resources, sharing risks and costs which is required for enhancing company performance. The purpose of this study was to examine the influence of strategic networks and logistics integration on company performance: the case of small and medium enterprises in South Africa. A quantitative research design was adopted in this study, and 137 SMEs owners and managers completed and returned the survey questionnaire. Confirmatory Factor Analysis (CFA) was conducted using the Analysis of Moment Structures (AMOS), version 24.0 to assess psychometric properties of the measurement scales. Path modelling techniques were used to test the proposed hypothesis. Three research hypotheses were postulated. The results indicate that strategic networks had a positive and significant influence on logistics integration and company performance. As well logistics integration had a strong positive and significant influence on company performance. This study provides a useful model for analysing the relationship between strategic networks and logistics integration on company performance. Moreover, the findings of the study provide useful insights into how SMEs should benefit from business networking and logistics integration so as to improve their performance. The implications of the study are discussed, and finally, limitations and recommendations are indicated.

Keywords: strategic networking, logistics integration, company performance, SMEs

Procedia PDF Downloads 297
5245 Emotional Labour and Employee Performance Appraisal: The Missing Link in Some Hotels in South East Nigeria

Authors: Polycarp Igbojekwe

Abstract:

The main objective of this study was to determine if emotional labour has become a criterion in performance appraisal, job description, selection, and training schemes in the hotel industry in Nigeria. Our main assumption was that majority of hotel organizations have not built emotional labour into their human resources management schemes. Data were gathered by the use of structured questionnaires designed in Likert format, and interviews. The focus group was managers of the selected hotels. Analyses revealed that majority of the hotels have not built emotional labour into their human resources schemes particularly in the 1, 2, and 3-star hotels. It was observed that service employees of 1, 2, and 3-star hotels have not been adequately trained to perform emotional labour; a critical factor in quality service delivery. Managers of 1, 2, and 3-star hotels have not given serious thought to emotional labour as a critical factor in quality service delivery. The study revealed that suitability of an individual’s characteristics is not being considered as a criterion for selection and performance appraisal for service employees. The implication of this is that, person-job-fit is not seriously considered. It was observed that there has been a disconnect between required emotional competency, its recognition, evaluation, and training. Based on the findings of this study, it is concluded that selection, training, job description and performance appraisal instruments in use in hotels in Nigeria are inadequate. Human resource implications of the findings in this study are presented. It is recommended that hotel organizations should re-design and plan the emotional content and context of their human resources practices to reflect the emotional demands of front line jobs in the hotel industry and the crucial role emotional labour plays during service encounters.

Keywords: emotional labour, employee selection, job description, performance appraisal, person-job-fit, employee compensation

Procedia PDF Downloads 192
5244 Developing Commitment to Change in Egyptian Modern Bureaucracies

Authors: Nada Basset

Abstract:

Purpose: To examine the nature of the civil service sector as an employer through identifying the likely ways to develop employees’ commitment towards change in the civil service sector. Design/Methodology/Approach: a qualitative research approach was followed. Data was collected via a triangulation of interviews, non-participant observation and archival documents analysis. Non-probability sampling took place with a case-study method applied on a sample of 33 civil servants working in the Egyptian Ministry of State for Administrative Development (MSAD) which is the civil service entity acting as the change agent responsible for managing the government administrative reforms plan in the civil service sector. All study participants were actually working in one of the change projects/programmes and had a minimum of 12 months of service in the civil service. Interviews were digitally recorded and transcribed in the form of MS-Word documents, and data transcripts were analyzed manually using MS-Excel worksheets and main research themes were developed and statistics drawn using those Excel worksheets. Findings: The results demonstrate that developing the civil servant’s commitment towards change may require a number of suggested solutions like (1) employee involvement and participation in the planning and implementation processes, (2) linking the employee support to change to some tangible rewards and incentives, (3) appointing some inspirational change leaders that should act as role models, and (4) as a last resort, enforcing employee’s commitment towards change by coercion and authoritarianism. Practical Implications: it is clear that civil servants’ lack of organizational commitment is not directly related to their level of commitment towards change. The research findings showed that civil servants’ commitment towards change can be raised and promoted by getting them involved in the planning and implementation processes, as this develops some sense of belongingness and ownership, thus there is a fair chance that low organizationally committed civil servants can develop high commitment towards change; given they are provided a favorable environment where they are invited to participate and get involved into the move of change. Originality/Value: the research addresses a relatively new area of ‘developing organizational commitment in modern bureaucracies’ by virtue of investigating the levels of civil servants’ commitment towards their jobs and/or organizations -on one hand- and suggesting different ways of developing their commitment towards administrative reform and change initiatives in the Egyptian civil service sector.

Keywords: change, commitment, Egypt, bureaucracy

Procedia PDF Downloads 483
5243 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data

Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen

Abstract:

Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.

Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation

Procedia PDF Downloads 65
5242 Extension Services' Needs of Small Farmers in Biliran Province, Philippines

Authors: Mario C. Nierras

Abstract:

This study aimed to determine the extension services’ needs of small farmers in Biliran province, Philippines. It also sought to find out other issues/concerns of the small farmers. Extension services’ needs of small farmers were gathered through personal interviewing and observational analysis of randomly-selected small farmers in Biliran, Philippines. Biliran small farmers extension services’ needs include: raising fruits, raising legumes, raising vegetables, raising swine, raising cattle, and raising chicken (as priority broad skills). For the specific skills, diagnosing symptoms on fertilizer deficiencies, controlling plant pests and diseases, diagnosing signs on specific pest and disease damage, controlling animal pests and diseases, and doing artificial insemination were the priority skills. They considered an on-farm trial of new technology as most needed to be coupled with industry and quality-orientedness, as positive behaviors needed in farming success. The farmers still adhere to the so-called wait-and-see attitude, thus they are more convinced to follow a particular technology if they see a concrete result of the introduced changes. Technical needs prioritization of Biliran small farmers showed that they have a real need for crop and animal production skills to include the other issues/concerns. Extension service program planning for small farmers should be patterned after their technical needs giving due attention to some issues/concerns so that extension work could deliver the right skills for the right needs of the farmers.

Keywords: extension, extension service, extension service needs, extension service program, farmers, small farmers, marginal farmers

Procedia PDF Downloads 436
5241 Banking and Accounting Analysis Researches Effect on Environment and Income

Authors: Gerges Samaan Henin Abdalla

Abstract:

New methods of providing banking services to the customer have been introduced, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a new distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking.

Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise development

Procedia PDF Downloads 57
5240 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks

Authors: Hwayeon Song

Abstract:

The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.

Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect

Procedia PDF Downloads 247
5239 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions

Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven

Abstract:

In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.

Keywords: health services research, qualitative research, NHS workforce, primary care

Procedia PDF Downloads 58
5238 Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent

Authors: Nouria Bouchikhi, Soufiane Bedjaoui, C. Tewfik Bouchaour, Lamia Alachaher Bedjaoui, Ulrich Maschke

Abstract:

Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration.

Keywords: cross-linking density, liquid crystalline elastomers, phase diagrams, swelling

Procedia PDF Downloads 331
5237 Artificial Intelligent-Based Approaches for Task ‎Offloading, ‎Resource ‎Allocation and Service ‎Placement of ‎Internet of Things ‎Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications, and ‎various obstacles of traditional data centers, ‎mobile edge ‎computing (MEC) has ‎emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes, or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other, making task offloading (TO), ‎resource allocation (RA), and service placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP, and RA recent multi-‎objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications‎.

Keywords: mobile edge computing, multi-objective optimization, artificial ‎intelligence ‎approaches, task offloading, resource allocation, ‎ service placement

Procedia PDF Downloads 115
5236 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 436
5235 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision

Procedia PDF Downloads 428
5234 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 147