Search results for: second magnetization peak anomaly
774 Predicting Mixing Patterns of Overflows from a Square Manhole
Authors: Modupe O. Jimoh
Abstract:
During manhole overflows, its contents pollute the immediate environment. Understanding the pollutant transfer characteristics between manhole’s incoming sewer and the overflow is therefore of great importance. A square manhole with sides 388 mm by 388 mm and height 700 mm with an overflow facility was used in the laboratory to carry out overflow concentration measurements. Two scenarios were investigated using three flow rates. The first scenario corresponded to when the exit of the pipe becomes blocked and the only exit for the flow is the manhole. The second scenario is when there is an overflow in combination with a pipe exit. The temporal concentration measurements showed that the peak concentration of pollutants in the flow was attenuated between the inlet and the overflow. A deconvolution software was used to predict the Residence time distribution (RTD) and consequently the Cumulative Residence time distribution (CRTD). The CRTDs suggest that complete mixing is occurring between the pipe inlet and the overflow, like what is obtained in a low surcharged manhole. The results also suggest that an instantaneous stirred tank reactor model can describe the mixing characteristics.Keywords: CRTDs, instantaneous stirred tank reactor model, overflow, square manholes, surcharge, temporal concentration profiles
Procedia PDF Downloads 144773 Slope Stability of an Earthen Levee Strengthened by HPTRM under Turbulent Overtopping Conditions
Authors: Fashad Amini, Lin Li
Abstract:
High performance turf reinforcement mat (HPTRM) is one of the most advanced flexible armoring technologies for severe erosion challenges. The effect of turbulence on the slope stability of an earthen levee strengthened by high performance turf reinforcement mat (HPTRM) is investigated in this study for combined storm surge and wave overtopping conditions. The results show that turbulence has strong influence on the slope stability during the combined storm surge and wave overtopping conditions. Among the surge height, peak wave force and turbulent force. The turbulent force has the ability to stabilize the earthen levee at the large wave force the turbulent force has strongest effect on the FS. The surge storm acts as an independent force on the slope stability of the earthen levee. It just adds to the effects of the turbulent force and wave force on the slope stability of HPTRM strengthened levee.Keywords: slope stability, strength reduction method, HPTRM, levee, overtopping
Procedia PDF Downloads 364772 Complex Cooling Approach in Microchannel Heat Exchangers Using Solid and Hollow Fins
Authors: Nahum Yustus Godi
Abstract:
A three-dimensional numerical optimisation of combined microchannels with constructal solid, half hollow, and hollow circular fins is documented in this paper. The technique seeks to minimize peak temperature in the entire volume of the microchannel heat sink. The volume and axial length were all fixed, while the width of the microchannel could morph. High-density heat flux was applied at the bottom wall of the microchannel. The coolant employed to remove the heat deposited at the bottom surface of the microchannel was a single-phase fluid (water) in a forced convection laminar condition, and heat transfer was a conjugate problem. The unit cell symmetrical computation domain was discretised, and governing equations were solved using computational fluid dynamic (CFD) code. The results reveal that the combined microchannel with hollow circular fins and solid fins performed better at different Reynolds numbers. The numerical study was validated for the single microchannel without fins and found to be in good agreement with previous studies.Keywords: constructal fins, complex heat exchangers, cooling technique, numerical optimisation
Procedia PDF Downloads 225771 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 269770 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork
Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting
Abstract:
This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark
Procedia PDF Downloads 268769 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market
Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini
Abstract:
In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition
Procedia PDF Downloads 359768 Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria
Authors: Jayeola A. O., Ayodele O. S., Olususi J. I.
Abstract:
From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area.Keywords: petrography, Ila Orangun, petrochemistry, pegmatites, peraluminous
Procedia PDF Downloads 63767 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 340766 Digital Image Steganography with Multilayer Security
Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal
Abstract:
In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix
Procedia PDF Downloads 337765 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation
Authors: Azeem Ur Rehman, Asma Tayyaba
Abstract:
This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell
Procedia PDF Downloads 492764 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory
Procedia PDF Downloads 284763 High Purity Germanium Detector Characterization by Means of Monte Carlo Simulation through Application of Geant4 Toolkit
Authors: Milos Travar, Jovana Nikolov, Andrej Vranicar, Natasa Todorovic
Abstract:
Over the years, High Purity Germanium (HPGe) detectors proved to be an excellent practical tool and, as such, have established their today's wide use in low background γ-spectrometry. One of the advantages of gamma-ray spectrometry is its easy sample preparation as chemical processing and separation of the studied subject are not required. Thus, with a single measurement, one can simultaneously perform both qualitative and quantitative analysis. One of the most prominent features of HPGe detectors, besides their excellent efficiency, is their superior resolution. This feature virtually allows a researcher to perform a thorough analysis by discriminating photons of similar energies in the studied spectra where otherwise they would superimpose within a single-energy peak and, as such, could potentially scathe analysis and produce wrongly assessed results. Naturally, this feature is of great importance when the identification of radionuclides, as well as their activity concentrations, is being practiced where high precision comes as a necessity. In measurements of this nature, in order to be able to reproduce good and trustworthy results, one has to have initially performed an adequate full-energy peak (FEP) efficiency calibration of the used equipment. However, experimental determination of the response, i.e., efficiency curves for a given detector-sample configuration and its geometry, is not always easy and requires a certain set of reference calibration sources in order to account for and cover broader energy ranges of interest. With the goal of overcoming these difficulties, a lot of researches turned towards the application of different software toolkits that implement the Monte Carlo method (e.g., MCNP, FLUKA, PENELOPE, Geant4, etc.), as it has proven time and time again to be a very powerful tool. In the process of creating a reliable model, one has to have well-established and described specifications of the detector. Unfortunately, the documentation that manufacturers provide alongside the equipment is rarely sufficient enough for this purpose. Furthermore, certain parameters tend to evolve and change over time, especially with older equipment. Deterioration of these parameters consequently decreases the active volume of the crystal and can thus affect the efficiencies by a large margin if they are not properly taken into account. In this study, the optimisation method of two HPGe detectors through the implementation of the Geant4 toolkit developed by CERN is described, with the goal of further improving simulation accuracy in calculations of FEP efficiencies by investigating the influence of certain detector variables (e.g., crystal-to-window distance, dead layer thicknesses, inner crystal’s void dimensions, etc.). Detectors on which the optimisation procedures were carried out were a standard traditional co-axial extended range detector (XtRa HPGe, CANBERRA) and a broad energy range planar detector (BEGe, CANBERRA). Optimised models were verified through comparison with experimentally obtained data from measurements of a set of point-like radioactive sources. Acquired results of both detectors displayed good agreement with experimental data that falls under an average statistical uncertainty of ∼ 4.6% for XtRa and ∼ 1.8% for BEGe detector within the energy range of 59.4−1836.1 [keV] and 59.4−1212.9 [keV], respectively.Keywords: HPGe detector, γ spectrometry, efficiency, Geant4 simulation, Monte Carlo method
Procedia PDF Downloads 120762 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization
Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda
Abstract:
The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.Keywords: initiator, bulk polymerization, layered silicates, methyl methacrylate
Procedia PDF Downloads 292761 Spectroscopic Study of Eu³⁺ Ions Doped Potassium Lead Alumino Borate Glasses for Photonic Device Application
Authors: Nisha Deopa, Allam Srinivasa Rao
Abstract:
Quaternary potassium lead alumino borate (KPbAlB) glasses doped with different concentration of Eu³⁺ ions have been synthesized by melt quench technique and characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Time-resolved photoluminescence (TRPL) and CIE-chromaticity co-ordinates to study their luminescence behavior. A broad hump was observed in XRD spectrum confirms glassy nature of as-prepared glasses. By using Judd-Ofelt (J-O) theory, various radiative parameters for the prominent fluorescent levels of Eu³⁺ have been investigated. The intense emission peak was observed at 613 nm (⁵D₀→⁷F₂) under 393 nm excitation, matches well with the excitation of n-UV LED chips. The decay profiles observed for ⁵D₀ level were exponential for lower Eu³⁺ ion concentration while non-exponential for higher concentration, which may be due to efficient energy transfer between Eu³⁺-Eu³⁺ through cross relaxation and subsequent quenching observed. From the emission cross-sections, branching ratios, quantum efficiency and CIE coordinates, it was concluded that 7 mol % of Eu³⁺ ion concentration (glass B) is optimum in KPbAlB glasses for photonic device application.Keywords: energy transfer, glasses, J-O parameters, photoluminescence
Procedia PDF Downloads 163760 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes
Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi
Abstract:
This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.Keywords: finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier
Procedia PDF Downloads 608759 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder
Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea
Abstract:
Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 123758 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth
Authors: T. B. Karu Jayasundara
Abstract:
The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.Keywords: gravity, minerals, tides, moon, costal, atmosphere
Procedia PDF Downloads 128757 Tensile and Bond Characterization of Basalt-Fabric Reinforced Alkali Activated Matrix
Authors: S. Candamano, A. Iorfida, F. Crea, A. Macario
Abstract:
Recently, basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result to be effective in structural strengthening and cost/environment efficient. In this study, authors investigate their mechanical behavior when an inorganic matrix, belonging to the family of alkali-activated binders, is used. In particular, the matrix has been designed to contain high amounts of industrial by-products and waste, such as Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash. Fresh state properties, such as workability, mechanical properties and shrinkage behavior of the matrix have been measured, while microstructures and reaction products were analyzed by Scanning Electron Microscopy and X-Ray Diffractometry. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. An appropriate experimental campaign based on direct tensile tests on composite specimens and single-lap shear bond test on brickwork substrate has been thus carried out to investigate their mechanical behavior under tension, the stress-transfer mechanism and failure modes. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST) were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, an average compressive strength of 32 MPa and flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline aluminium-modified calcium silicate hydrate (C-A-S-H) gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. Test results indicate that the behavior is mainly governed by cracks development (II) and widening (III) up to failure. The ultimate tensile strength and strain were respectively σᵤ = 456 MPa and ɛᵤ= 2.20%. The tensile modulus of elasticity in stage III was EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of a fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali-Activated Materials can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: Alkali-activated binders, Basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 129756 3D Simulation of the Twin-Aperture IRON Superconducting Quadrupole for Charm-Tau Factory
Authors: K. K. Riabchenko, T. V Rybitskaya, A. A. Starostenko
Abstract:
Sper Charm-Tau Factory is a double ring e+e- collider to be operated in the center-of-mass energy range from 2 to 6 GeV, with a peak luminosity of about 1035 cm-2s-1 (Crab Waist collision) and with longitudinally polarized electrons at the IP (interaction point). One of the important elements of the cτ-factory is the superconducting two-aperture quadrupole of the final focus. It was decided to make a full-scale prototype quadrupole. The main objectives of our study included: 1) 3D modeling of the quadrupole in the Opera program, 2) Optimization of the geometry of the quadrupole lens, 3) Study of the influence of magnetic properties and geometry of a quadrupole on integral harmonics. In addition to this, the ways of producing unwanted harmonics have been studied. In the course of this work, a 3D model of a two-aperture iron superconducting quadrupole lens was created. A three-dimensional simulation of the magnetic field was performed, and the geometrical parameters of the lens were selected. Calculations helped to find sources of possible errors and methods for correcting unwanted harmonics. In addition to this, calculations show that there are no obstacles to the production of a prototype lens.Keywords: super cτ-factory, final focus, twin aperture quadrupole lens, integral harmonics
Procedia PDF Downloads 126755 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test
Procedia PDF Downloads 419754 Modern Human and His Needy to the Prophecy (Case Study of AyatuAllah Mottahari Views)
Authors: Mohsen Nouraei, Mohammad Molavi
Abstract:
Muslim scholars for a long time have tried to prove the necessity of prophecy through the Qur'an verses, Hadith's concepts, and rational arguments. According to them, the human being cannot find his welfare way based on wisdom only. They emphasize that divine teaching of the prophets accompanied by wisdom (reason) helps people to find the best way of life and consequently they achieve perfection. In contrast, some believe that mentioned necessity is helpful for primitive and ancient societies, and, matured man in the modern era has flourished his wisdom and reached the peak of maturity. Hence, the modern human can recognize good and evil rely on the individual and social wisdom and as a result they can reach to the perfection without revelation and prophetic teaching. The essay via descriptive-analytical method has attempted to analyze and critic this thought through the study of Mottahari's works as a modern prominent scholars. Findings show that AyatuAllah Mottahari believes that not only modern human intellectual development is not needless of prophecy, but also they need religion and revelation teaching exactly like primitive and ancient societies. Wisdom inherent limitations common between primitive and modern human are the main reason of AyatuAllah Mottahari.Keywords: wisdom, modernity, prophecy, AyatuAllah Mottahari
Procedia PDF Downloads 347753 Fiber Based Pushover Analysis of Reinforced Concrete Frame
Authors: Shewangizaw Tesfaye Wolde
Abstract:
The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete
Procedia PDF Downloads 77752 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM
Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim
Abstract:
Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force
Procedia PDF Downloads 455751 Robust Data Image Watermarking for Data Security
Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan
Abstract:
In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms
Procedia PDF Downloads 515750 Innovative Grafting of Polyvinylpyrrolidone onto Polybenzimidazole Proton Exchange Membranes for Enhanced High-Temperature Fuel Cell Performance
Authors: Zeyu Zhou, Ziyu Zhao, Xiaochen Yang, Ling AI, Heng Zhai, Stuart Holmes
Abstract:
As a promising sustainable alternative to traditional fossil fuels, fuel cell technology is highly favoured due to its enhanced working efficiency and reduced emissions. In the context of high-temperature fuel cells (operating above 100 °C), the most commonly used proton exchange membrane (PEM) is the Polybenzimidazole (PBI) doped phosphoric acid (PA) membrane. Grafting is a promising strategy to advance PA-doped PBI PEM technology. The existing grafting modification on PBI PEMs mainly focuses on grafting phosphate-containing or alkaline groups onto the PBI molecular chains. However, quaternary ammonium-based grafting approaches face a common challenge. To initiate the N-alkylation reaction, deacidifying agents such as NaH, NaOH, KOH, K2CO3, etc., can lead to ionic crosslinking between the quaternary ammonium group and PBI. Polyvinylpyrrolidone (PVP) is another widely used polymer, the N-heterocycle groups within PVP endow it with a significant ability to absorb PA. Recently, PVP has attracted substantial attention in the field of fuel cells due to its reduced environmental impact and impressive fuel cell performance. However, due to the the poor compatibility of PVP in PBI, few research apply PVP in PA-doped PBI PEMs. This work introduces an innovative strategy to graft PVP onto PBI to form a network-like polymer. Due to the absence of quaternary ammonium groups, PVP does not pose issues related to crosslinking with PBI. Moreover, the nitrogen-containing functional groups on PVP provide PBI with a robust phosphoric acid retention ability. The nuclear magnetic resonance (NMR) hydrogen spectrum analysis results indicate the successful completion of the grafting reaction where N-alkylation reactions happen on both sides of the grafting agent 1,4-bis(chloromethyl)benzene. On one side, the reaction takes place with the hydrogen atoms on the imidazole groups of PBI, while on the other side, it reacts with the terminal amino group of PVP. The XPS results provide additional evidence from the perspective of the element. On synthesized PBI-g-PVP surfaces, there is an absence of chlorine (chlorine in grafting agent 1,4-bis(chloromethyl)benzene is substituted) element but a presence of sulfur element (sulfur element in terminal amino PVP appears in PBI), which demonstrates the occurrence of the grafting reaction and PVP is successfully grafted onto PBI. Prepare these modified membranes into MEA. It was found that during the fuel cell operation, all the grafted membranes showed substantial improvement in maximum current density and peak power density compared to unmodified one. For PBI-g-PVP 30, with a grafting degree of 22.4%, the peak power density reaches 1312 mW cm⁻², marking a 59.6% enhancement compared to the pristine PBI membrane. The improvement is caused by the improved PA binding ability of the membrane after grafting. The AST test result shows that the grafting membranes have better long-term durability and performance than unmodified membranes attributed to the presence of added PA binding sites, which can effectively prevent the PA leaching caused by proton migration. In conclusion, the test results indicate that grafting PVP onto PBI is a promising strategy which can effectively improve the fuel cell performance.Keywords: fuel cell, grafting modification, PA doping ability, PVP
Procedia PDF Downloads 79749 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach
Authors: Imen Dhaou
Abstract:
This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization
Procedia PDF Downloads 256748 Relationship between the Yo-Yo Intermittent Recovery Test Level 1 and Anaerobic Performance Tests in Youth Soccer Players
Authors: Turgay Ozgur, Bahar Ozgur, Gurcan Yazici
Abstract:
The aims of the study were to investigate the relationship between the Yo-Yo intermittent recovery test level 1 (YYIR1) and relatively easy to conduct anaerobic power tests such as Sergeant (SJ) and Standing Broad Jump (SBJ), the flexibility Sit&Reach test (S&R) and Hexagon Agility (HA) test in twenty youth soccer players, aged 14 years. Players completed YYIR1 and other performance tests [(SJ), (SBJ] in two consecutive days. The mean YYIR1 distances for the players was 1454 ± 420 m. Peak Anaerobic Power (PAPw) was calculated using SJ (cm) scores. The mean PAPw was 2966,83w. Spearman’s correlation test results revealed that there is a statistically significant negative correlation between HA and YYIR1 tests (r = -0.72, p=0.000) and no significant correlation was found between anaerobic power tests and YYIR1. In conclusion, as a test to measure player’s intermittent aerobic capacity YYIR1 test and anaerobic power test results have not shown significant correlation. Although the YYIR1 test has been used in talent identification, anaerobic qualifications of player’s should be assessed using designated performance tests.Keywords: yo-yo test, anaerobic power, soccer, sergeant jump test
Procedia PDF Downloads 388747 Urinary Schistosomiasis among Pre-School and School Aged Children in Two Peri-Urban Communities in Southwest Nigeria
Authors: Isiaka Akinwale, Tolulope Babatunde, Oladepo Sowemimo
Abstract:
A cross-sectional study was conducted between March and April, 2016 among pre-school and school-aged children in two peri-urban communities in Osun State, Southwest Nigeria. Urine samples were collected from the pre-school and school-aged children, tested for microhaematuria using reagent strips, processed and examined for Schistosoma haematobium ova. Out of 274 pupils examined, 132 (48.2%) had infection, with no statistically significant difference (P > 0.05) in infection between male (48.6%) and female pupils (47.6%). The prevalence of infection increases significantly with age (P < 0.05), with the peak (93.3%) of infection recorded in pupils aged 15 to 16 years and the lowest infection (10.0%) in pupils aged 3 to 4 years. There was no statistically significant association (P > 0.05) between intensity in male pupils (156.0 ± 34.5/10 ml) and female pupils (141.7 ± 29.5/10 ml). The prevalence of pupils with microhaematuria was 65.0% and it increased significantly with age (P < 0.001). The conclusion drawn from the study is that to reduce the transmission of S. haematobium in endemic communities, health education and provision of potable water are advocated.Keywords: Schistosoma haematobium, microhaeamturia, prevalence, urinary schistosomiasis, school aged children, Nigeria
Procedia PDF Downloads 425746 The Potential Use of Flavin Mononucleotide for Photoluminescent and Bioluminescent Textile
Authors: Sweta Iyer, Nemeshwaree Behary, Jinping Guan, Guoqiang Chen, Vincent Nierstrasz
Abstract:
Flavin mononucleotide widely known as 'FMN' is a biobased resource derived from riboflavin. The isoalloxazine ring present in the FMN molecule attributes the photoluminescence phenomenon, whereas FMN molecule in the presence of bacterial luciferase enzyme and co-factors such as NADH, long chain aldehyde leads to bioluminescence reaction. In this study, the FMN molecule was treated on cellulosic textile using chromojet technique and the photoluminescence property was characterized using spectroscopy technique. Further, the FMN was used as a substrate along with enzymes and co-factors to treat the non-woven textile, and the bioluminescence property was explored using luminometer equipment. The investigation revealed photoluminescence property on cellulosic textile, and the emission peak was observed at a wavelength around 530 nm with an average corrected spectral intensity of 10×106 CPS/Microamps. In addition, the measurement of nonwoven textile using bioluminescence reaction system exhibited light intensity measured in the form of relative light units (RLU). The study enabled to explore the use of FMN as both photoluminescent and bioluminescent textile. Further investigation would require for stability study of the same to provide an eco-efficient approach to obtain luminescent textile.Keywords: flavin mononucleotide, photoluminescence, bioluminescence, luminescent textile
Procedia PDF Downloads 291745 Beginner Steps of the First Dendrochronology Lab in Montenegro - Dendrochronology Research in The Bosnian Pine (Pinus heldreichii) Forests
Authors: Jelena Popović, Andrijana Mićanović
Abstract:
Officially, 60% of Montenegrin territory is covered in forests, but they are continually being destroyed by illegal cutting, concession politics and wildfires. Montenegrin Ecologists Society started the first dendrochronology lab in Montenegro, and data collection began in the Summer of 2021. The cores were taken from 3 localities around the peak Lisac on the mt. Prekornica, where biggest P.heldreichii forests existed until recent huge wildfires. This research is the first step towards comprehensive dendrochronology research in Montenegro. It will show how old certain forest stands of Pinus heldreichii on mountain Prekornica are, that were not destroyed in huge wildfires from the recent years. It will also show how do they correlate between each other. Per locality 15 trees were sampled. Electric sanders (150 - 2000) were used for preparation. Cores were scanned, then measured in CooRecorder. Analysis is done in Cofecha. Process will be repeated with Lintab 6 and TSAP (Time Series Analysis and Presentation for Dendrochronology and Related Applications) - Win Scientific software by Rinntech. Since this is the first dendrochronology research entirely done in Montenegro it is a foundation for the dendroclimatology research. Besides, it’ll contribute to the understanding of the life of these forests in this part of its areal, and in designing good management practices.Keywords: dendrochronology, bosnian pine, pinus heldreichii, montenegro, forests
Procedia PDF Downloads 96