Search results for: random intercepts model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18227

Search results for: random intercepts model

17297 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 524
17296 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 542
17295 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280
17294 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 455
17293 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 221
17292 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
17291 Assessment of Educational Service Quality at Master's Level in an Iranian University Using Based on HEdPERF Model

Authors: Faranak Omidian

Abstract:

The aim of this research was to examine the quality of education service at master's level in the Islamic Azad University of Dezful. In terms of objective, this is an applied research and in regard to methodology, it is a descriptive analytical research. The statistical population included all students of master's degree in the Islamic Azad University of Dezful. The sample size was determined using stratified random sampling method in different fields of study. The research questionnaire is the translated version of standardized Abdullah's HEdPERF 41-item scale which is based on a 5-point Likert scale. In order to determine the validity, the translated questionnaire was given to the professors of educational sciences. The correlation among all questions has been regarded at a value of 0.644. The results showed that the quality of educational service at master's level in this university, based on chi-square goodness of fit test, was equal to 73.36 and its degree of freedom was 2 at a significant level of 0.001, indicating the low desirability of the services. According to Friedman test, academic responsiveness has been reported to be in a higher status than other dimensions with an average rank of 3.94 while accessibility, with an average rank of 2.15, has been in the lowest status from master's students' viewpoint.

Keywords: educational service quality, master's level, Iranian university

Procedia PDF Downloads 280
17290 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 480
17289 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 228
17288 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro

Authors: Prativa Das, Lay Poh Tan

Abstract:

Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.

Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis

Procedia PDF Downloads 127
17287 Proactive WPA/WPA2 Security Using DD-WRT Firmware

Authors: Mustafa Kamoona, Mohamed El-Sharkawy

Abstract:

Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.

Keywords: Wi-Fi, WPS, TLS, DD-WRT

Procedia PDF Downloads 233
17286 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations

Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad

Abstract:

In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).

Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates

Procedia PDF Downloads 219
17285 Efficient Sampling of Probabilistic Program for Biological Systems

Authors: Keerthi S. Shetty, Annappa Basava

Abstract:

In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.

Keywords: systems biology, probabilistic model, inference, biology, model

Procedia PDF Downloads 349
17284 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
17283 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 204
17282 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects

Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid

Abstract:

Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.

Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE

Procedia PDF Downloads 361
17281 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam

Authors: T. M. Ismail, M. A. El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.

Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia PDF Downloads 406
17280 Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill

Authors: Dheyaa Wajid Abbood, Hanan Hussien Abood

Abstract:

Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure.

Keywords: stepped cascade weir, aeration, multiphase flow model, ansys

Procedia PDF Downloads 336
17279 Developing an Integrated Seismic Risk Model for Existing Buildings in Northern Algeria

Authors: R. Monteiro, A. Abarca

Abstract:

Large scale seismic risk assessment has become increasingly popular to evaluate the physical vulnerability of a given region to seismic events, by putting together hazard, exposure and vulnerability components. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), explains the steps and expected results for the development of an integrated seismic risk model for assessment of the vulnerability of residential buildings in Northern Algeria. For this purpose, the model foresees the consideration of an updated seismic hazard model, as well as ad-hoc exposure and physical vulnerability models for local residential buildings. The first results of this endeavor, such as the hazard model and a specific taxonomy to be used for the exposure and fragility components of the model are presented, using as starting point the province of Blida, in Algeria. Specific remarks and conclusions regarding the characteristics of the Northern Algerian in-built are then made based on these results.

Keywords: Northern Algeria, risk, seismic hazard, vulnerability

Procedia PDF Downloads 201
17278 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 199
17277 Asia Pacific University of Technology and Innovation

Authors: Esther O. Adebitan, Florence Oyelade

Abstract:

The Millennium Development Goals (MDGs) was initiated by the UN member nations’ aspiration for the betterment of human life. It is expressed in a set of numerical ‎and time-bound targets. In more recent time, the aspiration is shifting away from just the achievement to the sustainability of achieved MDGs beyond the 2015 target. The main objective of this study was assessing how much the hotel industry within the Nigerian Federal Capital Territory (FCT) as a member of the global community is involved in the achievement of sustainable MDGs within the FCT. The study had two population groups consisting of 160 hotels and the communities where these are located. Stratified random sampling technique was adopted in selecting 60 hotels based on large, medium ‎and small hotels categorisation, while simple random sampling technique was used to elicit information from 30 residents of three of the hotels host communities. The study was guided by tree research questions and two hypotheses aimed to ascertain if hotels see the need to be involved in, and have policies in pursuit of achieving sustained MDGs, and to determine public opinion regarding hotels contribution towards the achievement of the MDGs in their communities. A 22 item questionnaire was designed ‎and administered to hotel managers while 11 item questionnaire was designed ‎and administered to hotels’ host communities. Frequency distribution and percentage as well as Chi-square were used to analyse data. Results showed no significant involvement of the hotel industry in achieving sustained MDGs in the FCT and that there was disconnect between the hotels and their immediate communities. The study recommended that hotels should, as part of their Corporate Social Responsibility pick at least one of the goals to work on in order to be involved in the attainment of enduring Millennium Development Goals.

Keywords: MDGs, hotels, FCT, host communities, corporate social responsibility

Procedia PDF Downloads 417
17276 Wind Wave Modeling Using MIKE 21 SW Spectral Model

Authors: Pouya Molana, Zeinab Alimohammadi

Abstract:

Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.

Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio

Procedia PDF Downloads 402
17275 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market

Authors: Sibel Celik, Hüseyin Ergin

Abstract:

The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.

Keywords: volatility, GARCH model, realized volatility, high frequency data

Procedia PDF Downloads 486
17274 Application of the Tripartite Model to the Link between Non-Suicidal Self-Injury and Suicidal Risk

Authors: Ashley Wei-Ting Wang, Wen-Yau Hsu

Abstract:

Objectives: The current study applies and expands the Tripartite Model to elaborate the link between non-suicidal self-injury (NSSI) and suicidal behavior. We propose a structural model of NSSI and suicidal risk, in which negative affect (NA) predicts both anxiety and depression, positive affect (PA) predicts depression only, anxiety is linked to NSSI, and depression is linked to suicidal risk. Method: Four hundreds and eighty seven undergraduates participated. Data were collected by administering self-report questionnaires. We performed hierarchical regression and structural equation modeling to test the proposed structural model. Results: The results largely support the proposed structural model, with one exception: anxiety was strongly associated with NSSI and to a lesser extent with suicidal risk. Conclusions: We conclude that the co-occurrence of NSSI and suicidal risk is due to NA and anxiety, and suicidal risk can be differentiated by depression. Further theoretical and practical implications are discussed.

Keywords: non-suicidal self-injury, suicidal risk, anxiety, depression, the tripartite model, hierarchical relationship

Procedia PDF Downloads 470
17273 Valuation of Caps and Floors in a LIBOR Market Model with Markov Jump Risks

Authors: Shih-Kuei Lin

Abstract:

The characterization of the arbitrage-free dynamics of interest rates is developed in this study under the presence of Markov jump risks, when the term structure of the interest rates is modeled through simple forward rates. We consider Markov jump risks by allowing randomness in jump sizes, independence between jump sizes and jump times. The Markov jump diffusion model is used to capture empirical phenomena and to accurately describe interest jump risks in a financial market. We derive the arbitrage-free model of simple forward rates under the spot measure. Moreover, the analytical pricing formulas for a cap and a floor are derived under the forward measure when the jump size follows a lognormal distribution. In our empirical analysis, we find that the LIBOR market model with Markov jump risk better accounts for changes from/to different states and different rates.

Keywords: arbitrage-free, cap and floor, Markov jump diffusion model, simple forward rate model, volatility smile, EM algorithm

Procedia PDF Downloads 421
17272 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models

Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi

Abstract:

In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.

Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function

Procedia PDF Downloads 567
17271 The Causes and Effects of Delinquent Behaviour among Students in Juvenile Home: A Case Study of Osun State

Authors: Baleeqs, O. Adegoke, Adeola, O. Aburime

Abstract:

Juvenile delinquency is fast becoming one of the largest problems facing many societies due to many different factors ranging from parental factors to bullying at schools all which had led to different theoretical notions by different scholars. Delinquency is an illegal or immoral behaviour, especially by the young person who behaves in a way that is illegal or that society does not approve of. The purpose of the study was to investigate causes and effects of delinquent behaviours among adolescent in juvenile home in Osun State. A descriptive survey research type was employed. The random sampling technique was used to select 100 adolescents in Juvenile home in Osun State. Questionnaires were developed and given to them. The data collected from this study were analyzed using frequency counts and percentage for the demographic data in section A, while the two research hypotheses postulated for this study were tested using t-test statistics at the significance level of 0.05. Findings revealed that the greatest school effects of delinquent behaviours among adolescent in juvenile home in Osun by respondents were their aggressive behaviours. Findings revealed that there was a significant difference in the causes and effects of delinquent behaviours among adolescent in juvenile home in Osun State. It was also revealed that there was no significant difference in the causes and effects of delinquent behaviours among secondary school students in Osun based on gender. These recommendations were made in order to address the findings of this study: More number of teachers should be appointed in the observation home so that it will be possible to provide teaching to the different age group of delinquents. Developing the infrastructure facilities of short stay homes and observation home is a top priority. Proper counseling session’s interval is highly essential for these juveniles.

Keywords: behaviour, delinquency, juvenile, random sampling, statistical techniques, survey

Procedia PDF Downloads 191
17270 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software

Procedia PDF Downloads 330
17269 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 243
17268 Factors Influencing the Use of Mobile Phone by Smallholder Farmers in Vegetable Marketing in Fogera District

Authors: Molla Tadesse Lakew

Abstract:

This study was intended to identify the factors influencing the use of mobile phones in vegetable marketing in Fogera district. The use of mobile phones in vegetable marketing and factors influencing mobile phone use were specific objectives of the study. Three kebeles from the Fogera district were selected purposively based on their vegetable production potential. A simple random sampling technique (lottery method) was used to select 153 vegetable producer farmers. Interview schedule and key informants interviews were used to collect primary data. For analyzing the data, descriptive statistics like frequency and percentage, two independent t-tests, and chi-square were used. Furthermore, econometric analysis (binary logistic model) was used to assess the factors influencing mobile phone use for vegetable market information. Contingency coefficient and variance inflation factor were used to check multicollinearity problems between the independent variables. Of 153 respondents, 82 (61.72%) were mobile phone users, while 71 (38.28 %) were mobile phone nonusers. Moreover, the main use of mobile phones in vegetable marketing includes communicating at a distance to save time and minimizing transport costs, getting vegetable marketing price information, identifying markets and buyers to sell the vegetable, deciding when to sell the vegetable, negotiating with buyers for better vegetable prices and for searching of the fast market to avoid from losing of product through perishing. The model result indicated that the level of education, size of land, income, access to credit, and age were significant variables affecting the use of mobile phones in vegetable marketing. It could be recommended to encourage adult education or give training for farmers on how to operate mobile phones and create awareness for the elderly rural farmers as they are able to use the mobile phone for their vegetable marketing. Moreover, farmers should be aware that mobile phones are very important for those who own very small land to get maximum returns from their production. Lastly, providing access to credit and improving and diversifying income sources for the farmers to have mobile phones were recommended to improve the livelihood of farmers.

Keywords: mobile phone, farmers, vegetable marketing, Fogera District

Procedia PDF Downloads 73