Search results for: processing map
2762 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods
Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux
Abstract:
Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing
Procedia PDF Downloads 1912761 Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation
Authors: Doaa Hamdi, Ahmed Hashem
Abstract:
The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000).Keywords: remote sensing, petrography, mineralization, alteration detection
Procedia PDF Downloads 1642760 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 5202759 Image Based Landing Solutions for Large Passenger Aircraft
Authors: Thierry Sammour Sawaya, Heikki Deschacht
Abstract:
In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing
Procedia PDF Downloads 1012758 Optimal MRO Process Scheduling with Rotable Inventory to Minimize Total Earliness
Authors: Murat Erkoc, Kadir Ertogral
Abstract:
Maintenance, repair and overhauling (MRO) of high cost equipment used in many industries such as transportation, military and construction are typically subject to regulations set by local governments or international agencies. Aircrafts are prime examples for this kind of equipment. Such equipment must be overhauled at certain intervals for continuing permission of use. As such, the overhaul must be completed by strict deadlines, which often times cannot be exceeded. Due to the fact that the overhaul is typically a long process, MRO companies carry so called rotable inventory for exchange of expensive modules in the overhaul process of the equipment so that the equipment continue its services with minimal interruption. The extracted module is overhauled and returned back to the inventory for future exchange, hence the name rotable inventory. However, since the rotable inventory and overhaul capacity are limited, it may be necessary to carry out some of the exchanges earlier than their deadlines in order to produce a feasible overhaul schedule. An early exchange results with a decrease in the equipment’s cycle time in between overhauls and as such, is not desired by the equipment operators. This study introduces an integer programming model for the optimal overhaul and exchange scheduling. We assume that there is certain number of rotables at hand at the beginning of the planning horizon for a single type module and there are multiple demands with known deadlines for the exchange of the modules. We consider an MRO system with identical parallel processing lines. The model minimizes total earliness by generating optimal overhaul start times for rotables on parallel processing lines and exchange timetables for orders. We develop a fast exact solution algorithm for the model. The algorithm employs full-delay scheduling approach with backward allocation and can easily be used for overhaul scheduling problems in various MRO settings with modular rotable items. The proposed procedure is demonstrated by a case study from the aerospace industry.Keywords: rotable inventory, full-delay scheduling, maintenance, overhaul, total earliness
Procedia PDF Downloads 5442757 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 2492756 Strategies of Risk Management for Smallholder Farmers in South Africa: A Case Study on Pigeonpea (Cajanus cajan) Production
Authors: Sanari Chalin Moriri, Kwabena Kingsley Ayisi, Alina Mofokeng
Abstract:
Dryland smallholder farmers in South Africa are vulnerable to all kinds of risks, and it negatively affects crop productivity and profit. Pigeonpea is a leguminous and multipurpose crop that provides food, fodder, and wood for smallholder farmers. The majority of these farmers are still growing pigeonpea from traditional unimproved seeds, which comprise a mixture of genotypes. The objectives of the study were to identify the key risk factors that affect pigeonpea productivity and to develop management strategies on how to alleviate the risk factors in pigeonpea production. The study was conducted in two provinces (Limpopo and Mpumalanga) of South Africa in six municipalities during the 2020/2021 growing seasons. The non-probability sampling method using purposive and snowball sampling techniques were used to collect data from the farmers through a structured questionnaire. A total of 114 pigeonpea producers were interviewed individually using a questionnaire. Key stakeholders in each municipality were also identified, invited, and interviewed to verify the information given by farmers. Data collected were subjected to SPSS statistical software 25 version. The findings of the study were that majority of farmers affected by risk factors were women, subsistence, and old farmers resulted in low food production. Drought, unavailability of improved pigeonpea seeds for planting, access to information, and processing equipment were found to be the main risk factors contributing to low crop productivity in farmer’s fields. Above 80% of farmers lack knowledge on the improvement of the crop and also on the processing techniques to secure high prices during the crop off-season. Market availability, pricing, and incidence of pests and diseases were found to be minor risk factors which were triggered by the major risk factors. The minor risk factors can be corrected only if the major risk factors are first given the necessary attention. About 10% of the farmers found to use the crop as a mulch to reduce soil temperatures and to improve soil fertility. The study revealed that most of the farmers were unaware of its utilisation as fodder, much, medicinal, nitrogen fixation, and many more. The risk of frequent drought in dry areas of South Africa where farmers solely depend on rainfall poses a serious threat to crop productivity. The majority of these risk factors are caused by climate change due to unrealistic, low rainfall with extreme temperatures poses a threat to food security, water, and the environment. The use of drought-tolerant, multipurpose legume crops such as pigeonpea, access to new information, provision of processing equipment, and support from all stakeholders will help in addressing food security for smallholder farmers. Policies should be revisited to address the prevailing risk factors faced by farmers and involve them in addressing the risk factors. Awareness should be prioritized in promoting the crop to improve its production and commercialization in the dryland farming system of South Africa.Keywords: management strategies, pigeonpea, risk factors, smallholder farmers
Procedia PDF Downloads 2132755 Subdued Electrodermal Response to Empathic Induction Task in Intimate Partner Violence (IPV) Perpetrators
Authors: Javier Comes Fayos, Isabel Rodríguez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero Martínez, Luis Moya Albiol
Abstract:
Empathy is a cognitive-affective capacity whose deterioration is associated with aggressive behaviour. Deficient affective processing is one of the predominant risk factors in men convicted of intimate partner violence (IPV perpetrators), since it makes their capacity to empathize very difficult. The objective of this study is to compare the response of electrodermal activity (EDA), as an indicator of emotionality, to an empathic induction task, between IPV perpetrators and men without a history of violence. The sample was composed of 51 men who attended the CONTEXTO program, with penalties for gender violence under two years, and 47 men with no history of violence. Empathic induction was achieved through the visualization of 4 negative emotional-eliciting videos taken from an emotional induction battery of videos validated for the Spanish population. The participants were asked to actively empathize with the video characters (previously pointed out). The psychophysiological recording of the EDA was accomplished by the "Vrije Universiteit Ambulatory Monitoring System (VU-AMS)." An analysis of repeated measurements was carried out with 10 intra-subject measurements (time) and "group" (IPV perpetrators and non-violent perpetrators) as the inter-subject factor. First, there were no significant differences between groups in the baseline AED levels. Yet, a significant interaction between the “time” and “group” was found with IPV perpetrators exhibiting lower EDA response than controls after the empathic induction task. These findings provide evidence of a subdued EDA response after an empathic induction task in IPV perpetrators with respect to men without a history of violence. Therefore, the lower psychophysiological activation would be indicative of difficulties in the emotional processing and response, functions that are necessary for the empathic function. Consequently, the importance of addressing possible empathic difficulties in IPV perpetrator psycho-educational programs is reinforced, putting special emphasis on the affective dimension that could hinder the empathic function.Keywords: electrodermal activity, emotional induction, empathy, intimate partner violence
Procedia PDF Downloads 2002754 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 242753 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition
Procedia PDF Downloads 1992752 A CORDIC Based Design Technique for Efficient Computation of DCT
Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder
Abstract:
A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.Keywords: DCT, DFT, CORDIC, FFT
Procedia PDF Downloads 4782751 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process
Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira
Abstract:
Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.Keywords: electrocoagulation, fish, food industry, wastewater
Procedia PDF Downloads 2492750 Sorting Fish by Hu Moments
Authors: J. M. Hernández-Ontiveros, E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla
Abstract:
This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production.Keywords: counting fish, digital image processing, invariant moments, pattern recognition
Procedia PDF Downloads 4092749 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2512748 Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films
Authors: Cheng-Ying Li, Sheng-Yuan Chu
Abstract:
This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C.Keywords: RF sputtering, piezoelectricity, ZnO, Mg
Procedia PDF Downloads 412747 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing
Procedia PDF Downloads 1302746 Effect of Roasting Treatment on Milling Quality, Physicochemical, and Bioactive Compounds of Dough Stage Rice Grains
Authors: Chularat Leewuttanakul, Khanitta Ruttarattanamongkol, Sasivimon Chittrakorn
Abstract:
Rice during grain development stage is a rich source of many bioactive compounds. Dough stage rice contains high amounts of photochemical and can be used for rice milling industries. However, rice grain at dough stage had low milling quality due to high moisture content. Thermal processing can be applied to rice grain for improving milled rice yield. This experiment was conducted to study the chemical and physic properties of dough stage rice grain after roasting treatment. Rice were roasted with two different methods including traditional pan roasting at 140 °C for 60 minutes and using the electrical roasting machine at 140 °C for 30, 40, and 50 minutes. The chemical, physical properties, and bioactive compounds of brown rice and milled rice were evaluated. The result of this experiment showed that moisture content of brown and milled rice was less than 10 % and amylose contents were in the range of 26-28 %. Rice grains roasting for 30 min using electrical roasting machine had high head rice yield and length and breadth of grain after milling were close to traditional pan roasting (p > 0.05). The lightness (L*) of rice did not affect by roasting treatment (p > 0.05) and the a* indicated the yellowness of milled rice was lower than brown rice. The bioactive compounds of brown and milled rice significantly decreased with increasing of drying time. Brown rice roasted for 30 minutes had the highest of total phenolic content, antioxidant activity, α-tocopherol, and ɤ-oryzanol content. Volume expansion and elongation of cooked rice decreased as roasting time increased and quality of cooked rice roasted for 30 min was comparable to traditional pan roasting. Hardness of cooked rice as measured by texture analyzer increased with increasing roasting time. The results indicated that rice grains at dough stage, containing a high amount of bioactive compounds, have a great potential for rice milling industries and the electrical roasting machine can be used as an alternative to pan roasting which decreases processing time and labor costs.Keywords: bioactive compounds, cooked rice, dough stage rice grain, grain development, roasting
Procedia PDF Downloads 1632745 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 1952744 Evaluation of Three Potato Cultivars for Processing (Crisp French Fries)
Authors: Hatim Bastawi
Abstract:
Three varieties of potatoes, namely Agria, Alpha and Diamant were evaluated for their suitability for industrial production of French fries. The evaluation was under taken after testing quality parameters of specific gravity, dry matter, peeling ratio, and defect after frying and panel test. The variety Agria ranked the best followed by Alpha with regard to the parameters tested. On the other hand, Diamant showed significantly higher defect percentage than the other cultivars. Also, it was significantly judged of low acceptance by panelists.Keywords: cultivars, crisps, French fries
Procedia PDF Downloads 2612743 Fog Computing- Network Based Computing
Authors: Navaneeth Krishnan, Chandan N. Bhagwat, Aparajit P. Utpat
Abstract:
Cloud Computing provides us a means to upload data and use applications over the internet. As the number of devices connecting to the cloud grows, there is undue pressure on the cloud infrastructure. Fog computing or Network Based Computing or Edge Computing allows to move a part of the processing in the cloud to the network devices present along the node to the cloud. Therefore the nodes connected to the cloud have a better response time. This paper proposes a method of moving the computation from the cloud to the network by introducing an android like appstore on the networking devices.Keywords: cloud computing, fog computing, network devices, appstore
Procedia PDF Downloads 3882742 Structural Correlates of Reduced Malicious Pleasure in Huntington's Disease
Authors: Sandra Baez, Mariana Pino, Mildred Berrio, Hernando Santamaria-Garcia, Lucas Sedeno, Adolfo Garcia, Sol Fittipaldi, Agustin Ibanez
Abstract:
Schadenfreude refers to the perceiver’s experience of pleasure at another’s misfortune. This is a multidetermined emotion which can be evoked by hostile feelings and envy. The experience of Schadenfreude engages mechanisms implicated in diverse social cognitive processes. For instance, Schadenfreude involves heightened reward processing, accompanied by increased striatal engagement and it interacts with mentalizing and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of Schadenfreude experience, suggesting a role of striatal degeneration in such an impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced Schadenfreude. This study investigated whether gray matter (GM) atrophy in HD patients correlates with ratings of Schadenfreude. First, we compared the performance of 20 HD patients and 23 controls on an experimental task designed to trigger Schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. Results showed that while both groups showed similar ratings of envy, HD patients reported lower Schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalizing network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in Schadenfreude, while offering novel evidence about their neural correlates. In addition, our results open the door to future studies investigating social emotion processing in other clinical populations characterized by striatal or mentalizing network impairments (e.g., Parkinson’s disease, schizophrenia, autism spectrum disorders).Keywords: envy, Gray matter atrophy, Huntigton's disease, Schadenfreude, social emotions
Procedia PDF Downloads 3352741 Study of White Salted Noodles Air Dehydration Assisted by Microwave as Compared to Conventional Air Dried Process
Authors: Chiun-C. R. Wang, I-Yu Chiu
Abstract:
Drying is the most difficult and critical step to control in the dried salted noodles production. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method for the noodle preparation. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted and conventional air driers and many agricultural products were dried successfully. There is very few research associated with the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional air and microwave-assisted air drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, and sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no significant difference of noodle was appeared on the surface of noodles between low power (0.5 KW) microwave-assisted salted noodles and control set. The optimum cooking time of noodles was decreased as higher power microwave was applied or higher proportion of rice bran was incorporated in the preparation of salted noodles. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. Meanwhile, the higher power of microwave-assisted air dried noodles indicated the larger air cell inside the noodles and appeared little burnt stripe on the surface of noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and overall acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased with the increases of rice bran proportion in the salted noodles. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and more acceptable quality of cooked noodles as compared to conventional dried noodles.Keywords: white salted noodles, microwave-assisted air drying processing, cooking yield, appearance, texture profiles, scanning electrical microscopy, sensory evaluation
Procedia PDF Downloads 4942740 Dynamic Web-Based 2D Medical Image Visualization and Processing Software
Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail
Abstract:
In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN
Procedia PDF Downloads 1602739 Study of Syntactic Errors for Deep Parsing at Machine Translation
Authors: Yukiko Sasaki Alam, Shahid Alam
Abstract:
Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.Keywords: syntactic parsing, error analysis, machine translation, deep parsing
Procedia PDF Downloads 5602738 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 2252737 H.263 Based Video Transceiver for Wireless Camera System
Authors: Won-Ho Kim
Abstract:
In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.Keywords: wireless video transceiver, video surveillance camera, H.263 video encoding digital signal processing
Procedia PDF Downloads 3642736 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause
Authors: Kana Matsuyanagi
Abstract:
Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI
Procedia PDF Downloads 432735 DHL CSI Solution Design Project
Authors: Mohammed Al-Yamani, Yaser Miaji
Abstract:
DHL Customer Solutions and Innovation Department (CSI) have been experiencing difficulties while comparing quotes for different customers in different years. Currently, the employees are processing data by opening several loaded Excel files where the quotes are and manually copying values to another Excel Workbook where the comparison is made. This project consists of developing a new and effective database for DHL CSI department so that information is stored altogether on the same catalog. That being said, we have been assigned to find an efficient algorithm that can deal with the different formats of the Excel Workbooks to copy and store the express customer rates for core products (DOX, WPX, IMP) for comparisons purposes.Keywords: DHL, solution design, ORACLE, EXCEL
Procedia PDF Downloads 4102734 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy
Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş
Abstract:
Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance
Procedia PDF Downloads 2462733 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 107