Search results for: parking space detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6927

Search results for: parking space detection

5997 R-Killer: An Email-Based Ransomware Protection Tool

Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena

Abstract:

Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.

Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine

Procedia PDF Downloads 190
5996 Development Process and Design Methods for Shared Spaces in Europe

Authors: Kazuyasu Yoshino, Keita Yamaguchi, Toshihiko Nishimura, Masashi Kawasaki

Abstract:

Shared Space, the planning and design concept that allows pedestrians and vehicles to coexist in a street space, has been advocated and developed according to the traffic conditions in each country in Europe. Especially in German/French-speaking countries, the "Meeting Zone," which is a traffic rule combining speed regulation (20km/h) and pedestrian priority, is often applied when designing shared spaces at intersections, squares, and streets in the city center. In this study, the process of establishment and development of the Meeting Zone in Switzerland, France, and Austria was chronologically organized based on the descriptions in the major discourse and guidelines in each country. Then, the characteristics of the spatial design were extracted by analyzing representative examples of Meeting Zone applications. Finally, the relationships between the different approaches to designing of Meeting Zone and traffic regulations in different countries were discussed.

Keywords: shared space, traffic calming, meeting zone, street design

Procedia PDF Downloads 69
5995 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 159
5994 Dynamic Background Updating for Lightweight Moving Object Detection

Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo

Abstract:

Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.

Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference

Procedia PDF Downloads 322
5993 Text Similarity in Vector Space Models: A Comparative Study

Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge

Abstract:

Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.

Keywords: big data, patent, text embedding, text similarity, vector space model

Procedia PDF Downloads 156
5992 Study of Launch Recovery Control Dynamics of Retro Propulsive Reusable Rockets

Authors: Pratyush Agnihotri

Abstract:

The space missions are very costly because the transportation to the space is highly expensive and therefore there is the need to achieve complete re-usability in our launch vehicles to make the missions highly economic by cost cutting of the material recovered. Launcher reusability is the most efficient approach to decreasing admittance to space access economy, however stays an incredible specialized hurdle for the aerospace industry. Major concern of the difficulties lies in guidance and control procedure and calculations, specifically for those of the controlled landing stage, which should empower an exact landing with low fuel edges. Although cutting edge ways for navigation and control are present viz hybrid navigation and robust control. But for powered descent and landing of first stage of launch vehicle the guidance control is need to enable on board optimization. At first the CAD model of the launch vehicle I.e. space x falcon 9 rocket is presented for better understanding of the architecture that needs to be identified for the guidance and control solution for the recovery of the launcher. The focus is on providing the landing phase guidance scheme for recovery and re usability of first stage using retro propulsion. After reviewing various GNC solutions, to achieve accuracy in pre requisite landing online convex and successive optimization are explored as the guidance schemes.

Keywords: guidance, navigation, control, retro propulsion, reusable rockets

Procedia PDF Downloads 76
5991 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting

Authors: Ifedapo Francis Awolowo

Abstract:

The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.

Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance

Procedia PDF Downloads 342
5990 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 64
5989 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA

Authors: Siti Aishah Hasbullah

Abstract:

Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.

Keywords: gold, screen printed electrode, ruthenium, porcine DNA

Procedia PDF Downloads 293
5988 Semantic Differential Technique as a Kansei Engineering Tool to Enquire Public Space Design Requirements: The Case of Parks in Tehran

Authors: Nasser Koleini Mamaghani, Sara Mostowfi

Abstract:

The complexity of public space design makes it difficult for designers to simultaneously consider all issues for thorough decision-making. Among public spaces, the public space around people’s house is the most prominent space that affects and impacts people’s daily life. Considering recreational public spaces in cities, their main purpose would be to design for experiences that enable a deep feeling of peace and a moment of being away from the hectic daily life. Respecting human emotions and restoring natural environments, although difficult and to some extent out of reach, are key issues for designing such spaces. In this paper we propose to analyse the structure of recreational public spaces and the related emotional impressions. Furthermore, we suggest investigating how these structures influence people’s choice for public spaces by using differential semantics. According to Kansei methodology, in order to evaluate a situation appropriately, the assessment variables must be adapted to the user’s mental scheme. This means that the first step would have to be the identification of a space’s conceptual scheme. In our case study, 32 Kansei words and 4 different locations, each with a different sensual experience, were selected. The 4 locations were all parks in the city of Tehran (Iran), each with a unique structure and artifacts such as a fountain, lighting, sculptures, and music. It should be noted that each of these parks has different combination and structure of environmental and artificial elements like: fountain, lightning, sculpture, music (sound) and so forth. The first one was park No.1, a park with natural environment, the selected space was a fountain with motion light and sculpture. The second park was park No.2, in which there are different styles of park construction: ways from different countries, the selected space was traditional Iranian architecture with a fountain and trees. The third one was park No.3, the park with modern environment and spaces, and included a fountain that moved according to music and lighting. The fourth park was park No.4, the park with combination of four elements: water, fire, earth, wind, the selected space was fountains squirting water from the ground up. 80 participant (55 males and 25 females) aged from 20-60 years participated in this experiment. Each person filled the questionnaire in the park he/she was in. Five-point semantic differential scale was considered to determine the relation between space details and adjectives (kansei words). Received data were analyzed by multivariate statistical technique (factor analysis using SPSS statics). Finally the results of this analysis are criteria as inspiration which can be used in future space designing for creating pleasant feeling in users.

Keywords: environmental design, differential semantics, Kansei engineering, subjective preferences, space

Procedia PDF Downloads 390
5987 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 226
5986 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools

Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha

Abstract:

The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.

Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase

Procedia PDF Downloads 126
5985 Methodology for Assessing Spatial Equity of Urban Green Space

Authors: Asna Anchalan, Anjana Bhagyanathan

Abstract:

Urban green space plays an important role in providing health (physical and mental well-being), economic, and environmental benefits for urban residents and neighborhoods. Ensuring equitable distribution of urban green space is vital to ensure equal access to these benefits. This study is developing a methodology for assessing spatial equity of urban green spaces in the Indian context. Through a systematic literature review, the research trends, parameters, data, and tools being used are identified. After 2020, the research in this domain is increasing rapidly, where COVID-19 acted as a catalyst. Indian documents use various terminologies, definitions, and classifications of urban green spaces. The terminology, definition, and classification for this study are done after reviewing several Indian documents, master plans, and research papers. Parameters identified for assessing spatial equity are availability, proximity, accessibility, and socio-economic disparity. Criteria for evaluating each parameter were identified from diverse research papers. There is a research gap identified as a comprehensive approach encompassing all four parameters. The outcome of this study led to the development of a methodology that addresses the gaps, providing a practical tool applicable across diverse Indian cities.

Keywords: urban green space, spatial equity, accessibility, proximity, methodology

Procedia PDF Downloads 36
5984 Medical Student's Responses to Emotional Content in Doctor-Patient Communication: To Explore Differences in Communication Training of Medical Students and Its Impact on Doctor-Patient Communication

Authors: Stephanie Yun Yu Law

Abstract:

Background: This study aims to investigate into communication between trainee doctors and patients, especially how doctor’s reaction to patient’s emotional issues expressed in the consultation affect patient’s satisfaction. Objectives: Thus, there are three aims in this study, 1.) how do trainee doctors react to patients emotional cues in OSCE station? 2.) Any differences in the respond type to emotional cues between first year students and third year students? 3.) Is response type (reducing space) related to OSCE outcome (patient satisfaction and expert rating)? Methods: Fifteen OSCE stations was videotaped, in which 9 were stations with first-year students and 6 were with third-year students. OSCE outcomes were measured by Communication Assessment Tool and Examiners Checklist. Analyses: All patient’s cues/concerns and student’s reaction were coded by Verona Coding Definitions of Emotional Sequence. Descriptive data was gathered from Observer XT and logistic regression (two-level) was carried out to see if occurrence of reducing space response can be predicted by OSCE outcomes. Results: Reducing space responses from all students were slightly less than a half in total responses to patient’s cues. The mean percentage of reducing space behaviours was lower among first year students when compared to third year students. Patient’s satisfaction significantly (p<0.05) and negatively predicted reducing space behaviours. Conclusions: Most of the medical students, to some extent, did not provide adequate responses for patient’s emotional cues. But first year students did provide more space for patients to talk about their emotional issues when compared to third year students. Lastly, patients would feel less satisfied if trainee doctors use more reducing space responses in reaction to patient’s expressed emotional cues/concerns. Practical implications: Firstly, medical training programme can be tailored on teaching students how to detect and respond appropriately to emotional cues in order to improve underperformed student’s communication skills in healthcare setting. Furthermore, trainee doctor’s relationship with patients in clinical practice can also be improved by reacting appropriately to patient’s emotive cues in consultations (such as limit the use of reducing space behaviours).

Keywords: doctors-patients communication, applied clinical psychology, health psychology, healthcare professionals

Procedia PDF Downloads 201
5983 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer

Authors: Maomao Cao

Abstract:

Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.

Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance

Procedia PDF Downloads 134
5982 Research of Control System for Space Intelligent Robot Based on Vision Servo

Authors: Changchun Liang, Xiaodong Zhang, Xin Liu, Pengfei Sun

Abstract:

Space intelligent robotic systems are expected to play an increasingly important role in the future. The robotic on-orbital service, whose key is the tracking and capturing technology, becomes research hot in recent years. In this paper, the authors propose a vision servo control system for target capturing. Robotic manipulator will be an intelligent robotic system with large-scale movement, functional agility, and autonomous ability, and it can be operated by astronauts in the space station or be controlled by the ground operator in the remote operation mode. To realize the autonomous movement and capture mission of SRM, a kind of autonomous programming strategy based on multi-camera vision fusion is designed and the selection principle of object visual position and orientation measurement information is defined for the better precision. Distributed control system hierarchy is designed and reliability is considering to guarantee the abilities of control system. At last, a ground experiment system is set up based on the concept of robotic control system. With that, the autonomous target capturing experiments are conducted. The experiment results validate the proposed algorithm, and demonstrates that the control system can fulfill the needs of function, real-time and reliability.

Keywords: control system, on-orbital service, space robot, vision servo

Procedia PDF Downloads 406
5981 On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels

Authors: M. M. M. Jaradat

Abstract:

For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated.

Keywords: cycle space, minimum cycle basis, basis number, wreath product

Procedia PDF Downloads 262
5980 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: fault detection, ground robot, inverse simulation, rover

Procedia PDF Downloads 289
5979 The Association Between Objectively Measured Physical Activity and Health-related Quality of Life, Life-space Mobility and Successful Aging in Older Indian Adults

Authors: Jeanne Grace, Jacqueline Naiker

Abstract:

Background: Longevity is increasing, accompanied by a rise in disability and chronic diseases with physical activity (PA) delaying disability, ensuring successful aging (SA) and independent living in older adults. Aim: This study aimed to determine objectively measured PA levels, health-related quality of life (HRQoL), life-space mobility, and successful aging (SA) of older adults in KwaZulu-Natal province, South Africa, as well as their mutual associations. Methods: A total of 210 older adults aged 65–92 years were purposively sampled and completed the Medical Outcomes Study 36-Item Short-Form Health Survey, the Life-Space Mobility, and Successful Aging questionnaires. PA levels were measured using an Omron Pedometer, which the participants wore for seven consecutive days. Results: The average number of steps taken per day for the seven days was 2025, with 98.6% of the entire study population classified as sedentary. The Vitality domain (one of 8 categorized) reflected the best health status (M = 59.9, SD ± 18.8), with a significant 93% of the participants indicating that they had not visited places outside their immediate neighborhood (P < 0.0005). A significant, negative association between the average number of steps taken in 7 days and all three SA variables – namely, the physical (r = –0.152, P = 0.027), sociological (r = –0.148, P = 0.032) and psychological (r = –0.176, P = 0.010), and a significant, positive association with life-space mobility (r = 0.224, P = 0.001) was noted. Conclusion: The majority of the elderly were sedentary, affecting their HRQoL, life-space mobility, and SA negatively.

Keywords: active life expectancy, geriatrics, nursing homes, well-being

Procedia PDF Downloads 154
5978 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 134
5977 Detection of Helicobacter Pylori by PCR and ELISA Methods in Patients with Hyperlipidemia

Authors: Simin Khodabakhshi, Hossein Rassi

Abstract:

Hyperlipidemia refers to any of several acquired or genetic disorders that result in a high level of lipids circulating in the blood. Helicobacter pylori infection is a contributing factor in the progression of hyperlipidemia with serum lipid changes. The aim of this study was to detect of Helicobacter pylori by PCR and serological methods in patients with hyperlipidemia. In this case-control study, 174 patients with hyperlipidemia and 174 healthy controls were studied. Also, demographics, physical and biochemical parameters were performed in all samples. The DNA extracted from blood specimens was amplified by H pylori cagA specific primers. The results show that H. pylori cagA positivity was detected in 79% of the hyperlipidemia and in 56% of the control group by ELISA test and 49% of the hyperlipidemia and in 24% of the control group by PCR test. Prevalence of H. pylori infection was significantly higher in hyperlipidemia as compared to controls. In addition, patients with hyperlipidemia had significantly higher values for triglyceride, total cholesterol, LDL-C, waist to hip ratio, body mass index, diastolic and systolic blood pressure and lower levels of HDL-C than control participants (all p < 0.0001). Our result detected the ELISA was a rapid and cost-effective detection and considering the high prevalence of cytotoxigenic H. pylori strains, cag A is suggested as a promising target for PCR and ELISA tests for detection of infection with toxigenic strains. In general, it can be concluded that molecular analysis of H. pylori cagA and clinical parameters are important in early detection of hyperlipidemia and atherosclerosis with H. pylori infection by PCR and ELISA tests.

Keywords: Helicobacter pylori, hyperlipidemia, PCR, ELISA

Procedia PDF Downloads 183
5976 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array

Procedia PDF Downloads 372
5975 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 107
5974 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 96
5973 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 123
5972 Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein

Authors: Sofia G. Meirinho, Luis G. Dias, António M. Peres, Lígia R. Rodrigues

Abstract:

The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring.

Keywords: osteopontin, aptamer, aptasensor, screen-printed electrode, cyclic voltammetry

Procedia PDF Downloads 412
5971 Realistic Testing Procedure of Power Swing Blocking Function in Distance Relay

Authors: Farzad Razavi, Behrooz Taheri, Mohammad Parpaei, Mehdi Mohammadi Ghalesefidi, Siamak Zarei

Abstract:

As one of the major problems in protecting large-dimension power systems, power swing and its effect on distance have caused a lot of damages to energy transfer systems in many parts of the world. Therefore, power swing has gained attentions of many researchers, which has led to invention of different methods for power swing detection. Power swing detection algorithm is highly important in distance relay, but protection relays should have general requirements such as correct fault detection, response rate, and minimization of disturbances in a power system. To ensure meeting the requirements, protection relays need different tests during development, setup, maintenance, configuration, and troubleshooting steps. This paper covers power swing scheme of the modern numerical relay protection, 7sa522 to address the effect of the different fault types on the function of the power swing blocking. In this study, it was shown that the different fault types during power swing cause different time for unblocking distance relay.

Keywords: power swing, distance relay, power system protection, relay test, transient in power system

Procedia PDF Downloads 363
5970 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 61
5969 Spatial Practice Towards Urban Identity: The Shift, Limitation and Contemporary Value of Christopher

Authors: Botao Zhao, Hong Jiang

Abstract:

Christopher Alexander's urban design theory challenges the technical rationality of the empiricism that prevailsin the first half of the 20th century. Alexander emphasizes the wholeness of the city through progressive design, conceptual-based participation, shaping of centrality, and other principles. Based on Christopher Alexander’s comprehensive book “a new theory of urban design” and by combining with other major works, this paper puts Alexander into the history of the post-modern shift of architecture and urban planning in the middle and late 20th century and analyzes the uniqueness of Alexander’s systematization of spatial context. Despite the overemphasis on the initiative of design, Alexander's attempt to discover the “objectivity” of good space -the ability to generate people's urban identity-through an expanded concept of space, and a systematic approach to design restructures the visceral connection between urban space and human. The concept of urban identity is then decomposed into the identity of the physical setting, identity of process, and identity of meaning. Professionals need to learn from the reality and history of urban space to construct spatial“vocabulary libraries” and create the wholeness of the city, and in which process strengthen the subjectivity of the discipline simultaneously, to generate living structures in which urban identity could be ultimately cultivated.

Keywords: christopher alexander, a new theory of urban design, Urban identity, pattern language, urban design

Procedia PDF Downloads 129
5968 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 91