Search results for: concrete curing
1180 Optimization of Bio-Based Mixture of Canarium Luzonicum and Calcium Oxide as Coating Material for Reinforcing Steel Bars
Authors: Charizza D. Montarin, Daryl Jae S. Sigue, Gilford Estores
Abstract:
Philippines was moderately vulnerable to corrosion and to prevent this problem, surface coating should be applied. The main objective of this research was to develop and optimize a bio-based mixture of Pili Resin and Lime as Coating Materials. There are three (3) factors to be considered in choosing the best coating material such as chemical adhesion, friction, and the bearing/shear against the steel bar-concrete interface. Fortunately, both proportions of the Bio-based coating materials (50:50 and 65:35) do not have red rust formation complying with ASTM B117 but failed in terms of ASTM D 3359. Splitting failures of concrete were observed in the Unconfined Reinforced Concrete Samples. All of the steel bars (uncoated and coated) surpassed the Minimum Bond strength (NSCP 2015) about 203% to 285%. The experiments were about 1% to 3% of the results from the ANSYS Simulations with and without Salt Spray Test. Using the bio-based and epoxy coatings, normal splitting strengths were declined. However, there has no significant difference between the results. Thus, the bio-based coating materials can be used as an alternative for the epoxy coating materials and it was highly recommended for Low – Rise Building only.Keywords: Canarium luzonicum, calcium oxide, corrosion, finite element simulations
Procedia PDF Downloads 3231179 Impact of Alkaline Activator Composition and Precursor Types on Properties and Durability of Alkali-Activated Cements Mortars
Authors: Sebastiano Candamano, Antonio Iorfida, Patrizia Frontera, Anastasia Macario, Fortunato Crea
Abstract:
Alkali-activated materials are promising binders obtained by an alkaline attack on fly-ashes, metakaolin, blast slag among others. In order to guarantee the highest ecological and cost efficiency, a proper selection of precursors and alkaline activators has to be carried out. These choices deeply affect the microstructure, chemistry and performances of this class of materials. Even if, in the last years, several researches have been focused on mix designs and curing conditions, the lack of exhaustive activation models, standardized mix design and curing conditions and an insufficient investigation on shrinkage behavior, efflorescence, additives and durability prevent them from being perceived as an effective and reliable alternative to Portland. The aim of this study is to develop alkali-activated cements mortars containing high amounts of industrial by-products and waste, such as ground granulated blast furnace slag (GGBFS) and ashes obtained from the combustion process of forest biomass in thermal power plants. In particular, the experimental campaign was performed in two steps. In the first step, research was focused on elucidating how the workability, mechanical properties and shrinkage behavior of produced mortars are affected by the type and fraction of each precursor as well as by the composition of the activator solutions. In order to investigate the microstructures and reaction products, SEM and diffractometric analyses have been carried out. In the second step, their durability in harsh environments has been evaluated. Mortars obtained using only GGBFS as binder showed mechanical properties development and shrinkage behavior strictly dependent on SiO2/Na2O molar ratio of the activator solutions. Compressive strengths were in the range of 40-60 MPa after 28 days of curing at ambient temperature. Mortars obtained by partial replacement of GGBFS with metakaolin and forest biomass ash showed lower compressive strengths (≈35 MPa) and shrinkage values when higher amount of ashes were used. By varying the activator solutions and binder composition, compressive strength up to 70 MPa associated with shrinkage values of about 4200 microstrains were measured. Durability tests were conducted to assess the acid and thermal resistance of the different mortars. They all showed good resistance in a solution of 5%wt of H2SO4 also after 60 days of immersion, while they showed a decrease of mechanical properties in the range of 60-90% when exposed to thermal cycles up to 700°C.Keywords: alkali activated cement, biomass ash, durability, shrinkage, slag
Procedia PDF Downloads 3251178 Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels
Authors: Velázquez Alejandro, Pradhan Sujan, Yoon Rokhyun, Sanada Yasushi
Abstract:
The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill.Keywords: analytical model, multi spring, performance evaluation, reinforced concrete, rocking mechanism, wooden wall
Procedia PDF Downloads 1061177 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: Belalia Douma Omar, Bakhta Boukhatem, Mohamed Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Adaptive Neuro-Fuzzy Inference System (ANFIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, super plasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.Keywords: self-compacting concrete, fly ash, strength prediction, fuzzy logic
Procedia PDF Downloads 3351176 Optimal Construction Using Multi-Criteria Decision-Making Methods
Authors: Masood Karamoozian, Zhang Hong
Abstract:
The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.Keywords: multi-criteria decision making, AHP, SAW, TOPSIS
Procedia PDF Downloads 1101175 Experimental Research on the Properties Reactive Powder Concrete (RPC)
Authors: S. Yousefi Oderji, B. Chen, M. A. Yazdi, J. Yang
Abstract:
This study investigates the influence of water-binder ratio, mineral admixtures (silica fume and ground granulated blast furnace slag), and copper coated steel fiber on fluidity diameter, compressive and flexural strengths of reactive powder concrete (RPC). The test results show that the binary combination of silica fume and blast-furnace slag provided a positive influence on the mechanical properties of RPC. Although the addition of fibers reduced the workability, results indicated a higher mechanical strength in the inclusion of fibers.Keywords: RPC, steel fiber, fluidity, mechanical properties
Procedia PDF Downloads 3041174 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System
Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim
Abstract:
For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member
Procedia PDF Downloads 1881173 Characteristics of the Mortars Obtained by Radioactive Recycled Sand
Authors: Claudiu Mazilu, Ion Robu, Radu Deju
Abstract:
At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio
Procedia PDF Downloads 1941172 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials
Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II
Procedia PDF Downloads 4371171 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 2981170 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation
Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir
Abstract:
It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.Keywords: concrete formulation, fractal character, granular packing, method of formulation
Procedia PDF Downloads 2591169 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure
Procedia PDF Downloads 1301168 Early Age Microstructural Analysis of Cement-Polymer Composite Paste Cured at High Temperature
Authors: Bertilia L. Bartley, Ledjane S. Barreto
Abstract:
As a preliminary investigation on the control of microcracking in composite cement pastes, this study explores and compares the compatibility of Tetraethyl Orthosilicate (TEOS), Ethylene Glycol (EG) and Silicone Resin (SIL) in cement pastes cured at high temperature. Pastes were prepared by incorporating ordinary Portland cement (OPC) into an additive solution, using a solution/cement ratio of 0.45. Specimens were molded for 24h at 21 ± 2°C, then cured in deionized water for another 24h at 74 ± 1°C. TEOS and EG influence on fresh paste properties were similar to the reference OPC paste yet disintegration was observed in EG and SIL specimens after the first 12h of curing. X-Ray Diffraction analysis (XRD) coupled with thermogravimetric analysis (TGA/DTG) verified that SIL addition impedes portlandite formation significantly. Backscatter Scanning Electron Microscopy (SEM) techniques were therefore performed on selected areas of each sample to investigate the morphology of the hydration products detected. Various morphologies of portlandite crystals were observed in pastes with EG and TEOS addition, as well as dense morphologies of calcium silicate hydrate (C-S-H) gel and fibers, and ettringite needles. However, the formation of portlandite aggregate and clusters of C-S-H was highly favored by TEOS addition. Furthermore, the microstructural details of composite pastes were clearly visible at low magnifications i.e. 500x, as compared to the OPC paste. The results demonstrate accelerated hydration within composite pastes, a uniform distribution of hydration products, as well as an adhesive interaction with the products and polymer additive. Overall, TEOS demonstrated the most favorable influence, which indicates the potential of TEOS as a compatible polymer additive within the cement system at high temperature.Keywords: accelerated curing, cement/polymer composite, hydration, microstructural properties, morphology, portlandite, scanning electron microscopy (sem)
Procedia PDF Downloads 1821167 A Review on the Usage of Ceramic Wastes in Concrete Production
Authors: O. Zimbili, W. Salim, M. Ndambuki
Abstract:
Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.Keywords: blended, morphological, pozzolanic, waste
Procedia PDF Downloads 3671166 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China
Abstract:
The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete
Procedia PDF Downloads 1811165 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study
Authors: Kernou Nassim
Abstract:
The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability
Procedia PDF Downloads 1171164 Use of Non-woven Polyethylene Terephthalate Fabrics to Improve Certain Properties of Concrete
Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri
Abstract:
Plastic packages have been broadly used for a long time. Such widespread usage of plastic has resulted in an increased amount of plastic wastes and many environmental impacts. Plastic wastes are one of the most significant types of waste materials because of their non-degradation and low biodegradability. It is why many researchers tried to find a safe and environmentally friendly solution for plastic wastes. In this goal, in the civil engineering industry, many types of plastic wastes have been incorporated, as a partial substitution of aggregates or as additive materials (fibers) in concrete mixtures because of their lengthier lifetime and lower weight. This work aims to study the mechanical properties (compressive, split tensile and flexural strengths) of concrete with a water-cement ratio (w/c) of 0.45 and with the incorporation of non-woven PET plastic sheets. Five configurations -without PET (reference), 1-layer sheet, 2-side, 3-side, and full sample wrapping- were applied. The 7, 14 and 28-days samples’ compressive strengths, flexural strength and split tensile strength were measured. The outcomes of the study show that the compressive strength was improved for the wrapped samples, particularly for the cylindrical specimens. Also, split tensile and flexural behaviors of the wrapped samples improved significantly compared to the reference ones. Moreover, reference samples were damaged into many parts after mechanical testing, while wrapped specimens were taken by the applied configurations and were not divided into many small fragments. Therefore, non-woven fabrics appeared to improve some properties of the concrete.Keywords: solid waste plastic, non-woven polyethylene terephthalate sheets, mechanical behaviors, crack pattern
Procedia PDF Downloads 1291163 Ingenious Use of Hypo Sludge in M25 Concrete
Authors: Abhinandan Singh Gill
Abstract:
Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.Keywords: concrete, sludge waste, hypo sludge, supplementary cementitious material
Procedia PDF Downloads 3071162 Development of Impervious Concrete Using Micro Silica and GGBS as Cement Replacement Materials
Authors: Muhammad Rizwan Akram, Saim Raza, Hamza Hanif Chauhan
Abstract:
This paper describes the aim of research to evaluate the performance of ordinary Portland concretes containing cement replacement materials in both binary and ternary system. Blocks of concrete were prepared to have a constant water-binder ratio of 0.30. The test variables included the type and the amount of the supplementary cementious materials (SCMs) such as class of Silica Fume (SF) and ground granulated blast furnace slag (GGBS). Portland cement was replaced with Silica Fume (SF) upto 7.5% and GGBS up to a level of 50%. Then physical properties are assessed from the compressive strength and permeability tests.Keywords: silica fume, GGBS, compressive strength, permeability
Procedia PDF Downloads 3771161 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge
Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti
Abstract:
Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis
Procedia PDF Downloads 1841160 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests
Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański
Abstract:
Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column
Procedia PDF Downloads 3991159 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)
Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi
Abstract:
The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco
Procedia PDF Downloads 1341158 Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold
Authors: Kyunghun Kang, Sangwoo Oh, Yongha Hwang
Abstract:
PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF).Keywords: microfluidic channel, polydimethylsiloxane, 3D printing, casting
Procedia PDF Downloads 2741157 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements
Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali
Abstract:
India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio
Procedia PDF Downloads 2371156 An Analytical Approach for the Fracture Characterization in Concrete under Fatigue Loading
Authors: Bineet Kumar
Abstract:
Many civil engineering infrastructures frequently encounter repetitive loading during their service life. Due to the inherent complexity observed in concrete, like quasi-brittle materials, understanding the fatigue behavior in concrete still posesa challenge. Moreover, the fracture process zone characteristics ahead of the crack tip have been observed to be different in fatigue loading than in the monotonic cases. Therefore, it is crucial to comprehend the energy dissipation associated with the fracture process zone (FPZ) due to repetitive loading. It is well known that stiffness degradation due to cyclic loadingprovides a better understanding of the fracture behavior of concrete. Under repetitive load cycles, concrete members exhibit a two-stage stiffness degradation process. Experimentally it has been observed that the stiffness decreases initially with an increase in crack length and subsequently increases. In this work, an attempt has been made to propose an analytical expression to predict energy dissipation and later the stiffness degradation as a function of crack length. Three-point bend specimens have been considered in the present work to derive the formulations. In this approach, the expression for the resultant stress distribution below the neutral axis has been derived by correlating the bending stress with the cohesive stresses developed ahead of the crack tip due to the existence of the fracture process zone. This resultant stress expression is utilized to estimate the dissipated energydue to crack propagation as a function of crack length. Further, the formulation for the stiffness degradation has been developed by relating the dissipated energy with the work done. It can be used to predict the critical crack length and fatigue life. An attempt has been made to understand the influence of stress amplitude on the damage pattern by using the information on the rate of stiffness degradation. It has been demonstrated that with the increase in the stress amplitude, the damage/FPZ proceeds more in the direction of crack propagation compared to the damage in the direction parallel to the span of the beam, which causes a lesser rate of stiffness degradation for the incremental crack length. Further, the effect of loading frequency has been investigated in terms of stiffness degradation. Under low-frequency loading cases, the damage/FPZ has been found to spread more in the direction parallel to the span, in turn reducing the critical crack length and fatigue life. In such a case, a higher rate of stiffness degradation has been observed in comparison to the high-frequency loading case.Keywords: fatigue life, fatigue, fracture, concrete
Procedia PDF Downloads 951155 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite
Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler
Abstract:
Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC
Procedia PDF Downloads 2791154 Market Value of Ethno-Medicinally Important Plants of the Dughalgay Valley District Swat, Pakistan
Authors: Akbar Zeb, Shujaul Mulk Khan, Habib Ahmad, Manzoor Hussain, Mujtaba Shah
Abstract:
An ethnobotanical project was carried out in the Dughalgay valley District Swat in Hindu Kush region. The Local population not only use indigenous knowledge to use medicinal plants for curing various diseases but also earn their live hood by selling some of them in the local markets. An ethnobotanical project was carried out in the Doghalgay valley of upper Swat. The Local population not only use indigenous medicinal plants for curing various diseases but also earn their live hood by selling some of them in the local market. 102 of these medicinal plants were reported to be used in the region during questionnaire survey in spring 2007. Out of them 10 species are used as diuretic, 9 in stomachic and laxative each. Similarly 6, 5, 5, 4, 4, and 4 species of them are used as antiseptic, Anthelmintic, Carminative, Expectorant, Astringent and purgative respectively, while the remaining species have one or more than one medicinal use in the local community. 30 of these species are collected for marketing purposes, in which these medicinal plants such as Berberis lycium, Origanum vulgare, Bergenia ciliata, Aesculus indica, Podophyllum emodi, Pteredium aquilinum, Bergenia himalyca, Viola spp., Ajuga bracteosa, Morchella esculenta, Paeonia emodi, Atropa acuminate, Aconitum violaceum, Polygonum amplexicaulis, Bupleurum longicaule, Juglans regia, Diospyrus lotus, and Mentha longifolia are important. Study concluded that availability of medicinal plants is decreasing day by day due to human population pressure, marketing pressure, grazing and unwise collection. Therefore it is recommended that Governmental organizations and non Governmental organization should pay possible attention to make aware the local people about the future threats.Keywords: indigenous knowledge, ethnomedicinal uses, marketing, Hindu Kush
Procedia PDF Downloads 5031153 Enhancing the Use of Traditional, Complementary and Alternative Medicines into Global Cancer Treatment and Research
Authors: Alejandro Salicrup, Riacrdo Gelhman, Geetha Gopalakrishna
Abstract:
The main aim of this session is to have a panel to discuss specific steps for the integration of traditional, complementary and alternative medicine (TCAM) with conventional oncology for enhancing treatment practices at the global level, specifically in low-and-middle-income-countries (LMICs). Concrete current and required programs for strengthening Integrative Oncology research in LMICs will also be discussed. Case Studies from Latin America, Asia, Europe and Africa will discuss and highlight 1) What is working regarding treatment practices in integrative oncology in their countries/regions providing concrete examples 2) What is not working on this integration for cancer treatment in their countries/regions with concrete examples and 3) What are the challenges and opportunities for research related to integrative oncology treatment. Discussion will include potential next steps and potential mechanisms to enhance global integrative oncology research aimed to enhance the use of TCAM therapies and strengthening cancer treatment in LMICs.Keywords: global cancer treatment, integrative oncology research, low and middle income countries, traditional, complementary and alternative medicines
Procedia PDF Downloads 1221152 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests
Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota
Abstract:
Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.Keywords: liquefaction, shear modulus degradation, shaking table, earthquake
Procedia PDF Downloads 3871151 Evaluation of Mixtures of Recycled Concrete Aggregate and Reclaimed Asphalt Pavement Aggregate in Road Subbases
Authors: Vahid Ayan, Joshua R Omer, Alireza Khavandi, Mukesh C Limbachiya
Abstract:
In Iran, utilization of reclaimed asphalt pavement (RAP) aggregate has become a common practice in pavement rehabilitation during the last ten years. Such developments in highway engineering have necessitated several studies to clarify the technical and environmental feasibility of other alternative materials in road rehabilitation and maintenance. The use of recycled concrete aggregates (RCA) in asphalt pavements is one of the major goals of municipality of Tehran. Nevertheless little research has been done to examine the potential benefits of local RCA. The objective of this study is laboratory investigation of incorporating RCA into RAP for use in unbound subbase application. Laboratory investigation showed that 50%RCA+50%RAP is both technically and economically appropriate for subbase use.Keywords: Roads & highways, Sustainability, Recycling & reuse of materials
Procedia PDF Downloads 492