Search results for: computational brain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3171

Search results for: computational brain

2241 Underrepresentation of Right Middle Cerebral Infarct: A Statistical Parametric Mapping

Authors: Wi-Sun Ryu, Eun-Kee Bae

Abstract:

Prior studies have shown that patients with right hemispheric stroke are likely to seek medical service compared with those with left hemispheric stroke. However, the underlying mechanism for this phenomenon is unknown. In the present study, we generated lesion probability maps in a patient with right and left middle cerebral artery infarct and statistically compared. We found that precentral gyrus-Brodmann area 44, a language area in the left hemisphere - involvement was significantly higher in patients with left hemispheric stroke. This finding suggests that a language dysfunction was more noticeable, thereby taking more patients to hospitals.

Keywords: cerebral infarct, brain MRI, statistical parametric mapping, middle cerebral infarct

Procedia PDF Downloads 339
2240 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 234
2239 Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine

Authors: Tytus Tulwin, Rafal Sochaczewski, Ksenia Siadkowska

Abstract:

Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: CFD, combustion, injection, opposed piston

Procedia PDF Downloads 275
2238 Modeling the Human Harbor: An Equity Project in New York City, New York USA

Authors: Lauren B. Birney

Abstract:

The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.

Keywords: computer science, data science, equity, diversity and inclusion, STEM education

Procedia PDF Downloads 59
2237 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 192
2236 A Comparative Study to Evaluate Changes in Intraocular Pressure with Thiopentone Sodium and Etomidate in Patients Undergoing Surgery for Traumatic Brain Injury

Authors: Vasudha Govil, Prashant Kumar, Ishwar Singh, Kiranpreet Kaur

Abstract:

Traumatic brain injury leads to elevated intracranial pressure. Intraocular pressure (IOP) may also be affected by intracranial pressure. Increased venous pressure in the cavernous sinus is transmitted to the episcleral veins, resulting in an increase in IOP. All drugs used in anesthesia induction can change IOP. Irritation of the gag reflex after usage of the endotracheal tube can also increase IOP; therefore, the administration of anesthetic drugs, which make the lowest change in IOP, is important, while cardiovascular depression must also be avoided. Thiopentone decreases IOP by 40%, whereas etomidate decreases IOP by 30-60% for up to 5 minutes. Hundred patients (age 18-55 years) who underwent emergency craniotomy for TBI are selected for the study. Patients are randomly assigned to two groups of 50 patients each accord¬ing to the drugs used for induction: group T was given thiopentone sodium (5mg kg-1) and group E was given etomi¬date (0.3mg kg-1). Preanaesthesia intraocular pressure (IOP) was measured using Schiotz tonometer. Induction of anesthesia was achieved with etomidate (0.3mg kg-1) or thiopentone (5mg kg-1) along with fentanyl (2 mcg kg-1). Intravenous rocuronium (0.9mg kg-1) was given to facilitate intubation. Intraocular pressure was measured after 1 minute of induction agent administration and 5 minutes after intubation. Maintainance of anesthesia was done with isoflurane in 50% nitrous oxide with fresh gas flow of 5 litres. At the end of the surgery, the residual neuromuscular block was reversed and the patient was shifted to ward/ICU. Patients in both groups were comparable in terms of demographic profile. There was no significant difference between the groups for the hemody¬namic and respiratory variables prior to thiopentone or etomidate administration. Intraocular pressure in thiopentone group in left eye and right eye before induction was 14.97±3.94 mmHg and 14.72±3.75 mmHg respectively and for etomidate group was 15.28±3.69 mmHg and 15.54±4.46 mmHg respectively. After induction IOP decreased significantly in both the eyes (p<0.001) in both the groups. After 5 min of intubation IOP was significantly less than the baseline in both the eyes but it was more than the IOP after induction with the drug. It was found that there was no statistically significant difference in IOP between the two groups at any point of time. Both the drugs caused a significant decrease in IOP after induction and after 5 minutes of endotracheal intubation. The mechanism of decrease in IOP by intravenous induction agents is debatable. Systemic hypotension after the induction of anaesthesia has been shown to cause a decrease in intra-ocular pressure. A decrease in the tone of the extra-ocular muscles can also result in a decrease in intra-ocular pressure. We observed that it is appropriate to use etomidate as an induction agent when elevation of intra-ocular pressure is undesirable owing to the cardiovascular stability it confers in the patients.

Keywords: etomidate, intraocular pressure, thiopentone, traumatic

Procedia PDF Downloads 126
2235 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 99
2234 Creating and Questioning Research-Oriented Digital Outputs to Manuscript Metadata: A Case-Based Methodological Investigation

Authors: Diandra Cristache

Abstract:

The transition of traditional manuscript studies into the digital framework closely affects the methodological premises upon which manuscript descriptions are modeled, created, and questioned for the purpose of research. This paper intends to explore the issue by presenting a methodological investigation into the process of modeling, creating, and questioning manuscript metadata. The investigation is founded on a close observation of the Polonsky Greek Manuscripts Project, a collaboration between the Universities of Cambridge and Heidelberg. More than just providing a realistic ground for methodological exploration, along with a complete metadata set for computational demonstration, the case study also contributes to a broader purpose: outlining general methodological principles for making the most out of manuscript metadata by means of research-oriented digital outputs. The analysis mainly focuses on the scholarly approach to manuscript descriptions, in the specific instance where the act of metadata recording does not have a programmatic research purpose. Close attention is paid to the encounter of 'traditional' practices in manuscript studies with the formal constraints of the digital framework: does the shift in practices (especially from the straight narrative of free writing towards the hierarchical constraints of the TEI encoding model) impact the structure of metadata and its capability to respond specific research questions? It is argued that flexible structure of TEI and traditional approaches to manuscript description lead to a proliferation of markup: does an 'encyclopedic' descriptive approach ensure the epistemological relevance of the digital outputs to metadata? To provide further insight on the computational approach to manuscript metadata, the metadata of the Polonsky project are processed with techniques of distant reading and data networking, thus resulting in a new group of digital outputs (relational graphs, geographic maps). The computational process and the digital outputs are thoroughly illustrated and discussed. Eventually, a retrospective analysis evaluates how the digital outputs respond to the scientific expectations of research, and the other way round, how the requirements of research questions feed back into the creation and enrichment of metadata in an iterative loop.

Keywords: digital manuscript studies, digital outputs to manuscripts metadata, metadata interoperability, methodological issues

Procedia PDF Downloads 141
2233 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method

Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong

Abstract:

The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.

Keywords: moving wall, adaptive grid methods, CFD, moving mesh method

Procedia PDF Downloads 147
2232 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 69
2231 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 326
2230 High Thrust Upper Stage Solar Hydrogen Rocket Design

Authors: Maged Assem Soliman Mossallam

Abstract:

The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.

Keywords: space propulsion, hydrogen rocket, thrust, specific impulse

Procedia PDF Downloads 167
2229 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources

Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha

Abstract:

Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.

Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models

Procedia PDF Downloads 211
2228 Design and Validation of a Darrieus Type Hydrokinetic Turbine for South African Irrigation Canals Experimentally and Computationally

Authors: Maritz Lourens Van Rensburg, Chantel Niebuhr

Abstract:

Utilizing all available renewable energy sources is an ever-growing necessity, this includes a newfound interest into hydrokinetic energy systems, which open the door to installations where conventional hydropower shows no potential. Optimization and obtaining high efficiencies are key in these installations. In this study a vertical axis Darrieus hydrokinetic turbine is designed and constructed to address certain drawbacks experience by axial flow horizontal axis turbines in an irrigation channel. Many horizontal axis turbines have been well developed and optimized to have high efficiencies but depending on the conditions experienced in an open channel, the performance of these turbines may be adversely affected. The study analyses how the designed vertical axis turbine addresses the problems experienced by a horizontal axis turbine while still achieving a satisfactory efficiency. To be able to optimize the vertical axis turbine, a computational fluid dynamics model was validated to the experimental results obtained from the power generated from a test turbine installation operating at various rotational speeds. It was found that an accurate validated model can be obtained through validation of generated power output.

Keywords: hydrokinetic, Darrieus, computational fluid dynamics, vertical axis turbine

Procedia PDF Downloads 116
2227 Neural Correlates of Arabic Digits Naming

Authors: Fernando Ojedo, Alejandro Alvarez, Pedro Macizo

Abstract:

In the present study, we explored electrophysiological correlates of Arabic digits naming to determine semantic processing of numbers. Participants named Arabic digits grouped by category or intermixed with exemplars of other semantic categories while the N400 event-related potential was examined. Around 350-450 ms after the presentation of Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when stimuli were grouped by category relative to the mixed condition. Contrary to what was found in other studies, electrophysiological results suggested that the production of numerals involved semantic mediation.

Keywords: Arabic digit naming, event-related potentials, semantic processing, number production

Procedia PDF Downloads 583
2226 Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine

Authors: Harminder Kaur, Manpreet Kaur, Akanksha Kapila, Reenu

Abstract:

Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes.

Keywords: DFT, molecular docking, organotin(IV) complexes, o-vanillin, 3-nitro-o-phenylenediamine

Procedia PDF Downloads 162
2225 An Investigation into Enablers and Barriers of Reverse Technology Transfer

Authors: Nirmal Kundu, Chandan Bhar, Visveswaran Pandurangan

Abstract:

Technology is the most valued possession for a country or an organization. The economic development depends not on stock of technology but on the capabilities how the technology is being exploited. The technology transfer is the best way how the developing countries have an access to state-of- the-art technology. Traditional technology transfer is a unidirectional phenomenon where technology is transferred from developed to developing countries. But now there is a change of wind. There is a general agreement that global shift of economic power is under way from west to east. As China and India are making the transition from users to producers, and producers to innovators, this has increasing important implications on economy, technology and policy of global trade. As a result, Reverse technology transfer has become a phenomenon and field of study in technology management. The term “Reverse Technology Transfer” is not well defined. Initially the concept of Reverse technology transfer was associated with the phenomenon of “Brain drain” from developing to developed countries. In the second phase, Reverse Technology Transfer was associated with the transfer of knowledge and technology from subsidiaries to multinationals. Finally, time has come now to extend the concept of reverse technology transfer to two different organizations or countries related or unrelated by traditional technology transfer but the transfer or has essentially received the technology through traditional mode of technology transfer. The objective of this paper is to study; 1) the present status of Reverse technology transfer, 2) the factors which are the enablers and barriers of Reverse technology transfer and 3) how the reverse technology transfer strategy can be integrated in the technology policy of a country which will give the countries an economic boost. The research methodology used in this study is a combination of literature review, case studies and key informant interviews. The literature review includes both published as well as unpublished sources of literature. In case study, attempt has been made to study the records of reverse technology transfer that have been occurred in developing countries. In case of key informant interviews, informal telephonic discussions have been carried out with the key executives of the organizations (industry, university and research institutions) who are actively engaged in the process of technology transfer- traditional as well as reverse. Reverse technology transfer is possible only by creating technological capabilities. Following four important enablers coupled with government active and aggressive action can help to build technology base to reach to the goal of Reverse technology transfer 1) Imitation to innovation, 2) Reverse engineering, 3) Collaborative R & D approach, and 4) Preventing reverse brain drain. The barriers that come in the way are the mindset of over dependence, over subordination and parent–child attitude (not adult attitude). Exploitation of these enablers and overcoming the barriers of reverse technology transfer, the developing countries like India and China can prove that going “reverse” is the best way to move forward and again establish themselves as leader of the future world.

Keywords: barriers of reverse technology transfer, enablers of reverse technology transfer, knowledge transfer, reverse technology transfer, technology transfer

Procedia PDF Downloads 399
2224 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 237
2223 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 111
2222 A Clinician’s Perspective on Electroencephalography Annotation and Analysis for Driver Drowsiness Estimation

Authors: Ruxandra Aursulesei, David O’Callaghan, Cian Ryan, Diarmaid O’Cualain, Viktor Varkarakis, Alina Sultana, Joseph Lemley

Abstract:

Human errors caused by drowsiness are among the leading causes of road accidents. Neurobiological research gives information about the electrical signals emitted by neurons firing within the brain. Electrical signal frequencies can be determined by attaching bio-sensors to the head surface. By observing the electrical impulses and the rhythmic interaction of neurons with each other, we can predict the mental state of a person. In this paper, we aim to better understand intersubject and intrasubject variability in terms of electrophysiological patterns that occur at the onset of drowsiness and their evolution with the decreasing of vigilance. The purpose is to lay the foundations for an algorithm that detects the onset of drowsiness before the physical signs become apparent.

Keywords: electroencephalography, drowsiness, ADAS, annotations, clinician

Procedia PDF Downloads 116
2221 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking

Procedia PDF Downloads 197
2220 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach

Authors: N. Balamurugan, N. V. Mahalakshmi

Abstract:

Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.

Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic

Procedia PDF Downloads 295
2219 Investigation of Bubble Growth During Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity

Procedia PDF Downloads 387
2218 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD

Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis

Abstract:

It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performance

Keywords: Axial fan design, CFD, Preliminary Design, Optimization

Procedia PDF Downloads 397
2217 Psychophysiological Adaptive Automation Based on Fuzzy Controller

Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno

Abstract:

Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.

Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation

Procedia PDF Downloads 82
2216 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 232
2215 Impact of Neuron with Two Dendrites in Heart Behavior

Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue

Abstract:

Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.

Keywords: neural networks, neuron, dendrites, heart behavior, ECG

Procedia PDF Downloads 87
2214 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 71
2213 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 224
2212 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 145