Search results for: artificial inoculation
1327 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri
Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit
Abstract:
The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM
Procedia PDF Downloads 4091326 African Personhood and the Regulation of Brain-Computer Interface (BCI) Technologies: A South African view
Authors: Meshandren Naidoo, Amy Gooden
Abstract:
Implantable brain-computer interface (BCI) technologies have developed to the point where brain-computer communication is possible. This has great potential in the medical field, as it allows persons who have lost capacities. However, ethicists and regulators call for a strict approach to these technologies due to the impact on personhood. This research demonstrates that the personhood debate is more nuanced and that where an African approach to personhood is used, it may produce results more favorable to the development and use of this technology.Keywords: artificial intelligence, law, neuroscience, ethics
Procedia PDF Downloads 1331325 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 1161324 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1291323 Successful Natural Reproduction of the 'Extinct in the Wild; Yangtze Sturgeon Through Ecological Hydraulics-Based Spawning Habitat Creation
Authors: Hao Du, Xuan Ban, Pengcheng Li, Jinming Wu, Junyi Li
Abstract:
The Yangtze sturgeon, a Class I protected aquatic wildlife species in China, has suffered a rapid decline due to human activities such as dam construction, channel dredging, sand and stone mining, and overfishing. Its natural reproduction ceased by 2000, and it was assessed as ‘extinct in the wild’ by the IUCN in 2022. To save this endangered species, the Chinese government is fully committed to restoring the Yangtze's fishery resources, implementing policies such as the ‘10-year fishing ban’ and the Yangtze River Protection Law. Researchers have established an artificial population tier using limited wild stock and attempted to restore natural reproduction through parental release. Based on ecological hydraulics simulations of historical spawning grounds of the Chinese sturgeon and Yangtze sturgeon in the upper Yangtze River, this study identified flow velocity, substrate, and topography as key environmental factors for sturgeon reproduction. Through six consecutive years of indoor artificial spawning ground simulations, researchers pinpointed critical environmental parameters for Yangtze sturgeon's natural reproduction. Subsequently, they created a spawning habitat in the natural waters of the Jiajiang River, a branch of the Yangtze, successfully inducing natural reproduction of the Yangtze sturgeon for two consecutive years, with a total of 980,000 eggs laid and fertilization rates ranging from 54% to 83%. This breakthrough resolved the 20-year challenge of interrupted natural reproduction of the Yangtze sturgeon. This report systematically introduces research progress on the protection of the Yangtze sturgeon, providing a classic case for the reconstruction of wild populations of critically endangered aquatic animals and offering a reference for global freshwater biodiversity conservation.Keywords: dam, ecohydraulic conditions, spawning ground, habitat creation, natural reproduction, sturgeon, Yangzte River
Procedia PDF Downloads 81322 Digi-Buddy: A Smart Cane with Artificial Intelligence and Real-Time Assistance
Authors: Amaladhithyan Krishnamoorthy, Ruvaitha Banu
Abstract:
Vision is considered as the most important sense in humans, without which leading a normal can be often difficult. There are many existing smart canes for visually impaired with obstacle detection using ultrasonic transducer to help them navigate. Though the basic smart cane increases the safety of the users, it does not help in filling the void of visual loss. This paper introduces the concept of Digi-Buddy which is an evolved smart cane for visually impaired. The cane consists for several modules, apart from the basic obstacle detection features; the Digi-Buddy assists the user by capturing video/images and streams them to the server using a wide-angled camera, which then detects the objects using Deep Convolutional Neural Network. In addition to determining what the particular image/object is, the distance of the object is assessed by the ultrasonic transducer. The sound generation application, modelled with the help of Natural Language Processing is used to convert the processed images/object into audio. The object detected is signified by its name which is transmitted to the user with the help of Bluetooth hear phones. The object detection is extended to facial recognition which maps the faces of the person the user meets in the database of face images and alerts the user about the person. One of other crucial function consists of an automatic-intimation-alarm which is triggered when the user is in an emergency. If the user recovers within a set time, a button is provisioned in the cane to stop the alarm. Else an automatic intimation is sent to friends and family about the whereabouts of the user using GPS. In addition to safety and security by the existing smart canes, the proposed concept devices to be implemented as a prototype helping visually-impaired visualize their surroundings through audio more in an amicable way.Keywords: artificial intelligence, facial recognition, natural language processing, internet of things
Procedia PDF Downloads 3551321 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 731320 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment
Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues
Abstract:
Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.
Procedia PDF Downloads 2121319 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 711318 Legal Personality and Responsibility of Robots
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Arrival of artificial intelligence or smart robots in the modern world put them in charge on pericise and at risk. So acting human activities with robots makes criminal or civil responsibilities for their acts or behavior. The practical usage of smart robots has entered them in to a unique situation when naturalization happens and smart robots are identifies as members of society. There would be some legal situation by adopting these new smart citizens. The first situation is about legal responsibility of robots. Recognizing the naturalization of robot involves some basic right , so humans have the rights of employment, property, housing, using energy and other human rights may be employed for robots. So how would be the practice of these rights in the society and if some problems happens with these rights, how would the civil responsibility and punishment? May we consider them as population and count on the social programs? The second episode is about the criminal responsibility of robots in important activity instead of human that is the aim of inventing robots with handling works in AI technology , but the problem arises when some accidents are happened by robots who are in charge of important activities like army, surgery, transporting, judgement and so on. Moreover, recognizing independent identification for robots in the legal world by register ID cards, naturalization and civilian rights makes and prepare the same rights and obligations of human. So, the civil responsibility is not avoidable and if the robot commit a crime it would have criminal responsibility and have to be punished. The basic component of criminal responsibility may changes in so situation. For example, if designation for criminal responsibility bounds to human by sane, maturity, voluntariness, it would be for robots by being intelligent, good programming, not being hacked and so on. So it is irrational to punish robots by prisoning , execution and other human punishments for body. We may determine to make digital punishments like changing or repairing programs, exchanging some parts of its body or wreck it down completely. Finally the responsibility of the smart robot creators, programmers, the boss in chief, the organization who employed robot, the government which permitted to use robot in important bases and activities , will be analyzing and investigating in their article.Keywords: robot, artificial intelligence, personality, responsibility
Procedia PDF Downloads 1471317 Extraction and Encapsulation of Carotenoids from Carrot
Authors: Gordana Ćetković, Sanja Podunavac-Kuzmanović, Jasna Čanadanović-Brunet, Vesna Tumbas Šaponjac, Vanja Šeregelj, Jelena Vulić, Slađana Stajčić
Abstract:
The color of food is one of the decisive factors for consumers. Potential toxicity of artificial food colorants has led to the consumers' preference for natural products over products with artificial colors. Natural pigments have many bioactive functions, such as antioxidant, provitamin and many other. Having this in mind, the acceptability of natural colorants by the consumers is much higher. Being present in all photosynthetic plant tissues carotenoids are probably most widespread pigments in nature. Carrot (Daucus carota) is a good source of functional food components. Carrot is especially rich in carotenoids, mainly α- and β-carotene and lutein. For this study, carrot was extracted using classical extraction with hexane and ethyl acetate, as well as supercritical CO₂ extraction. The extraction efficiency was evaluated by estimation of carotenoid yield determined spectrophotometrically. Classical extraction using hexane (18.27 mg β-carotene/100 g DM) was the most efficient method for isolation of carotenoids, compared to ethyl acetate classical extraction (15.73 mg β-carotene/100 g DM) and supercritical CO₂ extraction (0.19 mg β-carotene/100 g DM). Three carrot extracts were tested in terms of antioxidant activity using DPPH and reducing power assay as well. Surprisingly, ethyl acetate extract had the best antioxidant activity on DPPH radicals (AADPPH=120.07 μmol TE/100 g) while hexane extract showed the best reducing power (RP=1494.97 μmol TE/100 g). Hexane extract was chosen as the most potent source of carotenoids and was encapsulated in whey protein by freeze-drying. Carotenoid encapsulation efficiency was found to be high (89.33%). Based on our results it can be concluded that carotenoids from carrot can be efficiently extracted using hexane and classical extraction method. This extract has the potential to be applied in encapsulated form due to high encapsulation efficiency and coloring capacity. Therefore it can be used for dietary supplements development and food fortification.Keywords: carotenoids, carrot, extraction, encapsulation
Procedia PDF Downloads 2711316 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 711315 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 3251314 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film
Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga
Abstract:
Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery
Procedia PDF Downloads 651313 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)
Procedia PDF Downloads 1951312 The Contemporary Visual Spectacle: Critical Visual Literacy
Authors: Lai-Fen Yang
Abstract:
In this increasingly visual world, how can we best decipher and understand the many ways that our everyday lives are organized around looking practices and the many images we encounter each day? Indeed, how we interact with and interpret visual images is a basic component of human life. Today, however, we are living in one of the most artificial visual and image-saturated cultures in human history, which makes understanding the complex construction and multiple social functions of visual imagery more important than ever before. Themes regarding our experience of a visually pervasive mediated culture, here, termed visual spectacle.Keywords: visual culture, contemporary, images, literacy
Procedia PDF Downloads 5141311 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism
Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa
Abstract:
This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.Keywords: lego NXT, interaction, BricX, autismo, ANN (Artificial Neural Network), MLP back propagation, hidden layers
Procedia PDF Downloads 5701310 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 761309 The Molecular Analysis of Effect of Phytohormones and Spermidine on Tomato Growth under Biotic Stress
Authors: Rumana Keyani, Haleema Sadia, Asia Nosheen, Rabia Naz, Humaira Yasmin, Sidra Zahoor
Abstract:
Tomato is a significant crop of the world and is one of the staple foods of Pakistan. A vast number of plant pathogens from simple viruses to complex parasites cause diseases in tomatoes but fungal infection in our country is quite high. Sometimes the symptoms are too harsh destroying the crop altogether. Countries like our own with continuously increasing massive population and limited resources cannot afford such an economic loss. There is an array of morphological, genetic, biochemical and molecular processes involved in plant resistance mechanisms to biotic stress. The study of different metabolic pathways like Jasmonic acid (JA) pathways and most importantly signaling molecules like ROS/RNS and their redoxin enzymes i.e. TRX and NRX is crucial to disease management, contributing to healthy plant growth. So, improving tolerance in crop plants against biotic stresses is a dire need of our country and world as whole. In the current study, fungal pathogenic strains Alternaria solani and Rhizoctonia solani were used to inoculate tomatoes to check the defense responses of tomato plant against these pathogens at molecular as well as phenotypic level with jasmonic acid and spermidine pretreatment. All the growth parameters (root and shoot length, dry and weight root, shoot weight measured 7 days post-inoculation, exhibited that infection drastically declined the growth of the plant whereas jasmonic acid and spermidine assisted the plants to cope up with the infection. Thus, JA and Spermidine treatments maintained comparatively better growth factors. Antioxidant assays and expression analysis through real time quantitative PCR following time course experiment at 24, 48 and 72 hours intervals also exhibited that activation of JA defense genes and a polyamine Spermidine helps in mediating tomato responses against fungal infection when used alone but the two treatments combined mask the effect of each other.Keywords: fungal infection, jasmonic acid defence, tomato, spermidine
Procedia PDF Downloads 1281308 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense
Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah
Abstract:
Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq
Procedia PDF Downloads 2651307 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces
Authors: Aditya Kumar
Abstract:
One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 2951306 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain
Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire
Abstract:
The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.Keywords: knowledge, attitude, practice, supply chain, articifial intellegence
Procedia PDF Downloads 921305 Effect of Hypoxia on the Antimicrobial Activity of Corvina Drum (Cilus Gilberti) Epidermal Mucus
Authors: Belinda Vega, Claudio Alvarez, Héctor Flores, Marcia Oliva, Katherine Alveal, Teresa Toro, María José Tapia, Fanny Guzmán
Abstract:
With the increase in global temperatures and the decrease of oxygen (O2) concentration in the oceans, fish cultures are exposed to frequent fluctuations in dissolved O2 (DO) concentration that can cause chronic stress in the animals, altering the normal functioning of their immune system and making them vulnerable to infections, consequently increasing morbidity and mortality in the farms with economic losses. The mucosal organs (skin -and mucus-, gills, gut, and nasal mucosa) are the first line of defense of the fish against pathogens. Therefore, the objective of this study is to evaluate the effect of hypoxia on the antimicrobial activity of epidermal mucus from corvina drum (Cilus Gilberti), a native marine species with the potential for the diversification of aquaculture in Chile. To achieve this, the epidermal mucus of juveniles (~220g) kept under normoxia (7 mg/L DO) and hypoxia (2 mg/L DO) environmental conditions was collected after 6 weeks, as well as after 6 days of intraperitoneal inoculation with lipopolysaccharide from Vibrio anguillarum to induce an immune response in the fish. Total protein extracts of the mucus were used for bactericidal activity and lysozyme and peroxidase activity assays. Although the mucus from both experimental groups showed inhibitory effects on the bacterial growth of Vibrio anguillarum and Vibrio ordalli, this effect was more long-lasting in the normoxia group. We also observed a notable reduction in the presence of lysozyme in the mucus from fish exposed to hypoxia, with no differences in peroxidase content. Future proteomic studies of corvina mucus associated with the environmental conditions studied in this work will allow the isolation and identification of peptides with antimicrobial activity, those responsible for the results obtained. This will help establish strategies aimed at minimizing the impacts of hypoxia on the defense responses of corvina drum against potential pathogens. Funding: FONDECYT 3200440 and FONDECYT 1210056Keywords: Cilus gilberti, mucus, antimicrobial activity, HYPOXIA
Procedia PDF Downloads 761304 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 501303 Reinventing Education Systems: Towards an Approach Based on Universal Values and Digital Technologies
Authors: Ilyes Athimni, Mouna Bouzazi, Mongi Boulehmi, Ahmed Ferchichi
Abstract:
The principles of good governance, universal values, and digitization are among the tools to fight corruption and improve the quality of service delivery. In recent years, these tools have become one of the most controversial topics in the field of education and a concern of many international organizations and institutions against the problem of corruption. Corruption in the education sector, particularly in higher education, has negative impacts on the quality of education systems and on the quality of administrative or educational services. Currently, the health crisis due to the spread of the COVID-19 pandemic reveals the difficulties encountered by education systems in most countries of the world. Due to the poor governance of these systems, many educational institutions were unable to continue working remotely. To respond to these problems encountered by most education systems in many countries of the world, our initiative is to propose a methodology to reinvent education systems based on global values and digital technologies. This methodology includes a work strategy for educational institutions, whether in the provision of administrative services or in the teaching method, based on information and communication technologies (ICTs), intelligence artificial, and intelligent agents. In addition, we will propose a supervisory law that will be implemented and monitored by intelligent agents to improve accountability, transparency, and accountability in educational institutions. On the other hand, we will implement and evaluate a field experience by applying the proposed methodology in the operation of an educational institution and comparing it to the traditional methodology through the results of teaching an educational program. With these specifications, we can reinvent quality education systems. We also expect the results of our proposal to play an important role at local, regional, and international levels in motivating governments of countries around the world to change their university governance policies.Keywords: artificial intelligence, corruption in education, distance learning, education systems, ICTs, intelligent agents, good governance
Procedia PDF Downloads 2131302 Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study
Authors: Radheshyam Yadav, Ramakrishna Wusirika
Abstract:
Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility.Keywords: AM Fungi, biofortification, PGPB, soil microbial enzymes
Procedia PDF Downloads 3251301 Post-Application Effects of Selected Management Strategies to the Citrus Nematode (Tylenchulus semipenetrans) Population Densities
Authors: Phatu William Mashela, Pontsho Edmund Tseke, Kgabo Martha Pofu
Abstract:
‘Inconsistent results’ in nematode suppression post-application of botanical-based products created credibility concerns. Relative to untreated control, sampling for nematodes post-application of botanical-based products suggested significant increases in nematode population densities. ‘Inconsistent results’ were confirmed in Tylenchulus semipenetrans on Citrus jambhiri seedlings when sampling was carried out at 120 days post-application of a granular Nemarioc-AG phytonematicide. The objective of this study was to determine post-application effects of untreated control, Nemarioc-AG phytonematicide and aldicarb to T. semipenetrans population densities on C. jambhiri seedlings. Two hundred and ten seedlings were each inoculated with 10000 T. semipenetrans eggs and second-stage juveniles (J2) in plastic pots containing 2700 ml growing mixture. A week after inoculation, seedlings were equally split and subjected to once-off treatment of 2 g aldicarb, 2 g Nemarioc-AG phytonematicide and untreated control. Five seedlings from each group were randomly placed on greenhouse benches to serve as a sampling block, with a total of 14 blocks. The entire block was sampled weekly and assessed for final nematode population density (Pf). After the final assessment, post-regression of untreated Pf to increasing sampling intervals exhibited positive quadratic relations, with the model explaining 90% associations, with optimum Pf of 13804 eggs and J2 at six weeks post-application. In contrast, treated Pf and increasing sampling interval exhibited negative quadratic relations, with the model explaining 95% and 92% associations in phytonematicide and aldicarb, respectively. In the phytonematicide, Pf was 974 eggs and J2, whereas that in aldicarb was 2205 eggs and J2 at six weeks. In conclusion, temporal cyclic nematode population growth provided an empirically-based explanation of ‘inconsistent results’ in nematode suppression post-application of the two nematode management strategies.Keywords: nematode management, residual effect, slow decline of citrus, the citrus nematode
Procedia PDF Downloads 2421300 Unequal Contributions of Parental Isolates in Somatic Recombination of the Stripe Rust Fungus
Authors: Xianming Chen, Yu Lei, Meinan Wang
Abstract:
The dikaryotic basidiomycete fungus, Puccinia striiformis, causes stripe rust, one of the most important diseases of wheat and barley worldwide. The pathogen is largely reproduced asexually, and asexual recombination has been hypothesized to be one of the mechanisms for the pathogen variations. To test the hypothesis and understand the genetic process of asexual recombination, somatic recombinant isolates were obtained under controlled conditions by inoculating susceptible host plants with a mixture of equal quantity of urediniospores of isolates with different virulence patterns and selecting through a series of inoculation on host plants with different genes for resistance to one of the parental isolates. The potential recombinant isolates were phenotypically characterized by virulence testing on the set of 18 wheat lines used to differentiate races of the wheat stripe rust pathogen, P. striiformis f. sp. tritici (Pst), for the combinations of Pst isolates; or on both sets of the wheat differentials and 12 barley differentials for identifying races of the barley stripe rust pathogen, P. striiformis f. sp. hordei (Psh) for combinations of a Pst isolate and a Psh isolate. The progeny and parental isolates were also genotypically characterized with 51 simple sequence repeat and 90 single-nucleotide polymorphism markers. From nine combinations of parental isolates, 68 potential recombinant isolates were obtained, of which 33 (48.5%) had similar virulence patterns to one of the parental isolates, and 35 (51.5%) had virulence patterns distinct from either of the parental isolates. Of the 35 isolates of distinct virulence patterns, 11 were identified as races that had been previously detected from natural collections and 24 were identified as new races. The molecular marker data confirmed 66 of the 68 isolates as recombinants. The percentages of parental marker alleles ranged from 0.9% to 98.9% and were significantly different from equal proportions in the recombinant isolates. Except for a couple of combinations, the greater or less contribution was not specific to any particular parental isolates as the same parental isolates contributed more to some of the progeny isolates but less to the other progeny isolates in the same combination. The unequal contributions by parental isolates appear to be a general role in somatic recombination for the stripe rust fungus, which may be used to distinguish asexual recombination from sexual recombination in studying the evolutionary mechanisms of the highly variable fungal pathogen.Keywords: molecular markers, Puccinia striiformis, somatic recombination, stripe rust
Procedia PDF Downloads 2441299 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 1401298 Durability of Light-Weight Concrete
Authors: Rudolf Hela, Michala Hubertova
Abstract:
The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment.Keywords: aggressive environment, durability, physical-mechanical properties, light-weight concrete
Procedia PDF Downloads 269