Search results for: and police intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1739

Search results for: and police intelligence

809 Inter-Generational Benefits of Improving Access to Justice for Women: Evidence from Peru

Authors: Iva Trako, Maris Micaela Sviatschi, Guadalupe Kavanaugh

Abstract:

Domestic violence is a major concern in developing countries, with important social, economic and health consequences. However, institutions do not usually address the problems facing women or ethnic and religious minorities. For example, the police do very little to stop domestic violence in rural areas of developing countries. This paper exploits the introduction of women’s justice centers (WJCs) in Peru to provide causal estimates on the effects of improving access to justice for women and children. These centers offer a new integrated public service model for women by including medical, psychological and legal support in cases of violence against women. Our empirical approach uses a difference in difference estimation exploiting variation over time and space in the opening of WJC together with province-by-year fixed effects. Exploiting administrative data from health providers and district attorney offices, we find that after the opening of these centers, there are important improvements on women's welfare: a large reduction in femicides and female hospitalizations for assault. Moreover, using geo-coded household surveys we find evidence that the existence of these services reduces domestic violence, improves women's health, increases women's threat points and, therefore, lead to household decisions that are more aligned with their interests. Using administrative data on the universe of schools, we find large gains on human capital for their children: affected children are more likely to enroll, attend school and have better grades in national exams, instead of working for the family. In sum, the evidence in this paper shows that providing access to justice for women can be a powerful tool to reduce domestic violence and increase education of children, suggesting a positive inter-generational benefit.

Keywords: access to justice, domestic violence, education, household bargaining

Procedia PDF Downloads 171
808 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 147
807 Is Class Struggle Still Useful for the Street Children Who Are Working and Committing Crimes in the Urban City of Bangladesh?

Authors: Shidratul Moontaha Suha

Abstract:

Violence is organized and utilized differently in various communities across the globe. The capacity to employ violence in numerous societies is largely limited to the apparatus of the state, like law enforcement officers, and in a small share of contexts, it is controlled within the state institutions as per the rule of law. Contrastingly, in many other societies, a broad array of players, mainly organized criminal gangs, are using violence on a substantial scale to agitate against social ills or attain personal interests. The present paper examined the role of social injustice in driving children living off and on the streets of Dhaka, Bangladesh, into joining organized criminal gangs and committing crimes. The study entailed a comprehensive review of existing literature with theoretical analyses based on three theories: the Marxist’s theory of capitalism and class struggle, the Weberian model of social stratification theory, and the social disorganization theory. The analysis revealed that, in Dhaka, Bangladesh, criminal gangs emerged from social disorganization of communities characterized by absolute poverty, residential mobility, and population heterogeneity, which promote deviance among the youth, and subsequently, led to the rise of organized gangs and delinquency. Although the latter was formed as a response to class struggle, they have been employed by the state and police as the tools of exploitation and oppression to rule the working class. The criminal gangs exploit the vulnerability of street children by using them as sources of cheap labor to peddle drugs, extort, or kill specific individuals who are against their ideals. In retrospect, the street children receive individual, group, and social protection. Therefore, social class struggle plays a central role in the proliferation of organized criminal gangs and the engagement of street children in criminal activities in Dhaka, Bangladesh.

Keywords: cheap labor, organized crimes, poverty, social stratification, social children

Procedia PDF Downloads 133
806 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm

Authors: Tusar Kanti Dash, Ganapati Panda

Abstract:

The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.

Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility

Procedia PDF Downloads 250
805 A Congenital Case of Dandy-Walker Malformation

Authors: Neerja Meena, Paresh Sukhani

Abstract:

Dandy walker malformation is a generalised disorder of mesenchymal development that affect both the cerebellum and overlying meninges. Classically dandy-walker malformation consists of a triad of- 1:vermian and hemispheric cerebellar hypoplasia 2:cystic dilatation of 4th ventricle 3: enlarged posterior fossa with the upward migration of tentorium(lambdoid- torcular inversion). Clinical presentation: four months old female child with hydrocephalus and neurological symptoms. Generally- early death is common in classic dandy walker malformation. However, if it is relatively mild and uncomplicated by other CNS anomalies, intelligence can be normal and neurologic deficits minimal. Usually, VP shunting is the treatment of choice for this hydrocephalus. Conclusion: MRI is the modality of choice to diagnose posterior fossa malformation. However, it can be ruled out through using during the antenatal check as the prognosis of this malformation is not good; it's better to diagnose it inutero.

Keywords: Dandy Walker, Mri, Earlydaignosis, Treatment

Procedia PDF Downloads 65
804 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities

Authors: Zoe Boon Suan Loy

Abstract:

An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.

Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners

Procedia PDF Downloads 62
803 Accident analysis in Small and Medium Enterprises (SMEs) in India

Authors: Pranab Kumar Goswami, Elena Gurung

Abstract:

Small and medium enterprises (SME) are considered as the driving force for the economic growth of a developing country like India. Most of the SMEs are located in residential/non-industrial areas to avoid legal obligations of occupational safety and health (OSH) provisions. This study was conducted in Delhiwith a view to analyze the accidents that occurredduringthe year 2019 & 2020. The objective of the study was to find out the accident prone SMEs in Delhi and major causes of such accidents. Methods: Survey and comprehensive data analysis methods, followed by applying simple statistical techniques, were used for this study. The accident reports for the study period collected from the labour department and police stations were analyzed for the study. The injured workers were interviewed to ascertain safety compliances, training and awareness programs, etc. The study was completed in March2021. Results: It was found that most of the accidents took place in SMEs located in residential/non- industrial areas in Delhi. The accident-prone machines were found to be power presses (42%) and injection moulding machines (37%). Predominantly unsafe machinery or unsafe working conditions and lack of training of worker were observed to be the major causes of accidents in such industries. Conclusions: It was concluded from the study that unsafe machinery/equipment and lack of proper training to the workers were two main reasons for increase in accidents.It was also concluded that the industries located in industrial areas were better placed in terms of workplace compliances. The managements who were running their operations from residential/non-industrial areaswere found to be less aware on health and safety issues. Lack of enforcement by government agencies in such areas has escalated this problem. Adequate training to workers, managing safe & healthy workplace, and sustained enforcement can reduce accidents in such industries.

Keywords: SME, accident prevention, cause of accident, unorganised

Procedia PDF Downloads 92
802 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 64
801 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use

Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner

Abstract:

The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.

Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning

Procedia PDF Downloads 351
800 Exploring the Impact of Cultural Values on the Performance of Women Bureaucrats in Pakistan

Authors: Fariya Tahreen

Abstract:

Women are an important part of the society comprising more than 50% population of the world. Participation of women in public services is increasing in the present era while cultural values embedded with gender differences still influencing the performance of working women. Many researches have been carried out on cultural impact on working women like managers, doctors, and lawyers and other public servants. But very rare efforts were made to study the impact of cultural values on the performance of women bureaucrats. The present study aimed to find out the relationship of cultural values (i.e., collective identity, gender segregation, and gender asymmetrical relations) with the performance of women bureaucrats. Sample of the present study comprised of 130 women bureaucrats from the Office Management Group, Inland Revenue, District Management Group, and Pakistan Police Services which is selected by convenient sampling technique. The locale of the study was Islamabad, Rawalpindi and Lahore city. The current research study was conducted by using a quantitative approach in research method and data were collected through survey method. The measures used in the study included: personal information, three main cultural values, and performance of women bureaucrats. Uni-variate and bi-variate analyses were implied by using correlation and multiple linear regression test. The current study shows a negative significant relationship between cultural values and performance of women bureaucrats (R²= 0.790, p-value 0.000). It shows that cultural values (collective identity, gender segregation and gender asymmetrical relations) significantly influence the performance of women bureaucrats. Due to the influence and pressure of these cultural values, women bureaucrats give less time to the office and avail more leaves. They also avoid contacting with male colleagues, public dealings, field visits and playing leadership role. Further, they attend fewer meetings of policy formulation due to given less importance for it. In a nutshell, the study concluded that cultural values significantly influence the performance of women bureaucrats in Pakistan.

Keywords: cultural values, performance, Pakistan, women bureaucrats

Procedia PDF Downloads 116
799 Cryptographic Protocol for Secure Cloud Storage

Authors: Luvisa Kusuma, Panji Yudha Prakasa

Abstract:

Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.

Keywords: cloud storage, security, cryptographic protocol, artificial intelligence

Procedia PDF Downloads 347
798 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 121
797 Enhancing AI for Global Impact: Conversations on Improvement and Societal Benefits

Authors: C. P. Chukwuka, E. V. Chukwuka, F. Ukwadi

Abstract:

This paper focuses on the advancement and societal impact of artificial intelligence (AI) systems. It explores the need for a theoretical framework in corporate governance, specifically in the context of 'hybrid' companies that have a mix of private and government ownership. The paper emphasizes the potential of AI to address challenges faced by these companies and highlights the importance of the less-explored state model in corporate governance. The aim of this research is to enhance AI systems for global impact and positive societal outcomes. It aims to explore the role of AI in refining corporate governance in hybrid companies and uncover nuanced insights into complex ownership structures. The methodology involves leveraging the capabilities of AI to address the challenges faced by hybrid companies in corporate governance. The researchers will analyze existing theoretical frameworks in corporate governance and integrate AI systems to improve problem-solving and understanding of intricate systems. The paper suggests that improved AI systems have the potential to shape a more informed and responsible corporate landscape. AI can uncover nuanced insights and navigate complex ownership structures in hybrid companies, leading to greater efficacy and positive societal outcomes. The theoretical importance of this research lies in the exploration of the role of AI in corporate governance, particularly in the context of hybrid companies. By integrating AI systems, the paper highlights the potential for improved problem-solving and understanding of intricate systems, contributing to a more informed and responsible corporate landscape. The data for this research will be collected from existing literature on corporate governance, specifically focusing on hybrid companies. Additionally, data on AI capabilities and their application in corporate governance will be collected. The collected data will be analyzed through a systematic review of existing theoretical frameworks in corporate governance. The researchers will also analyze the capabilities of AI systems and their potential application in addressing the challenges faced by hybrid companies. The findings will be synthesized and compared to identify patterns and potential improvements. The research concludes that AI systems have the potential to enhance corporate governance in hybrid companies, leading to greater efficacy and positive societal outcomes. By leveraging AI capabilities, nuanced insights can be uncovered, and complex ownership structures can be navigated, shaping a more informed and responsible corporate landscape. The findings highlight the importance of integrating AI in refining problem-solving and understanding intricate systems for global impact.

Keywords: advancement, artificial intelligence, challenges, societal impact

Procedia PDF Downloads 47
796 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 121
795 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence

Authors: Brahim Berbaoui

Abstract:

In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization

Procedia PDF Downloads 601
794 The Impact of Artificial Intelligence on Human Rights Development

Authors: Romany Wagih Farag Zaky

Abstract:

The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 42
793 Innovations in the Lithium Chain Value

Authors: Fiúza A., Góis J. Leite M., Braga H., Lima A., Jorge P., Moutela P., Martins L., Futuro A.

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques are used to minimize the laboratory effort required by conventional approaches and also allow phenomenological comprehension.

Keywords: artificial intelligence, tailings free process, ferroelectric electrolyte battery, life cycle assessment

Procedia PDF Downloads 106
792 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 537
791 Afghan Women’s Perceptions on Domestic Violence and Child Protection in Finland

Authors: Laleh Golamrej Eliasi

Abstract:

Finland is the second most violent country for women in the European Union (EU). 47% of women in Finland claimed to have experienced domestic violence against women (DVAW), compared to an average of 33% in the EU. Although the statistics in Finland are transparent, to the author’s best knowledge, there are no statisticsonDV by nationality in Finland. On the other hand, being a Muslim woman in a non-Muslim-majority country represents a position of double vulnerability to violence. There are 10404 Afghan refugees in Finland who are Muslim. Barriers such as unfamiliarity with support services, fear of the police, racism, language, economic and practical dependence, social isolation, and family commitments all lead to a lack of reporting of DVAW among migrants. Although witnessing and experiencing DV have devastating effects on women’s and children’s health and well-being, there is a lack of studies about DVAW among Afghan families in Finland. To fill this knowledge gap, Afghan women living in Finland are selected as the target group to assess their views on DVAW and child protection. This study is implemented in the socio-ecological approach framework to assess the impacts of individual characteristics, interpersonal relationships, community, and society components on DVAW in Afghan families. Interviews with Afghan women and content analysis are used to find out participants' views on DVAW, its risk factors, and approaches and methods to improve protection for women and children. Main purpose is to obtain information about participants' views on the subject. The findings can be used to improve culturally safe social work knowledge and practices with a bottom-up approach to reduce DV and increase child protection. Therefore, this research can have important effects on the sustainable development of services and supports the welfare and inclusion of immigrant families. The expected results will contribute to sustainable gender equality, which is in line with the fifth goal of the Sustainable Development Goals.

Keywords: domestic violence, immigrant women, immigrant child protection, social work

Procedia PDF Downloads 76
790 Fostering Students’ Cultural Intelligence: A Social Media Experiential Project

Authors: Lorena Blasco-Arcas, Francesca Pucciarelli

Abstract:

Business contexts have become globalised and digitalised, which requires that managers develop a strong sense of cross-cultural intelligence while working in geographically distant teams by means of digital technologies. How to better equip future managers on these kinds of skills has been put forward as a critical issue in Business Schools. In pursuing these goals, higher education is shifting from a passive lecture approach, to more active and experiential learning approaches that are more suitable to learn skills. For example, through the use of case studies, proposing plausible business problem to be solved by students (or teams of students), these institutions have focused for long in fostering learning by doing. Though, case studies are no longer enough as a tool to promote active teamwork and experiential learning. Moreover, digital advancements applied to educational settings have enabled augmented classrooms, expanding the learning experience beyond the class, which increase students’ engagement and experiential learning. Different authors have highlighted the benefits of digital engagement in order to achieve a deeper and longer-lasting learning and comprehension of core marketing concepts. Clickers, computer-based simulations and business games have become fairly popular between instructors, but still are limited by the fact that are fictional experiences. Further exploration of real digital platforms to implement real, live projects in the classroom seem relevant for marketing and business education. Building on this, this paper describes the development of an experiential learning activity in class, in which students developed a communication campaign in teams using the BuzzFeed platform, and subsequently implementing the campaign by using other social media platforms (e.g. Facebook, Instagram, Twitter…). The article details the procedure of using the project for a marketing module in a Bachelor program with students located in France, Italy and Spain campuses working on multi-campus groups. Further, this paper describes the project outcomes in terms of students’ engagement and analytics (i.e. visits achieved). the project included a survey in order to analyze and identify main aspects related to how the learning experience is influenced by the cultural competence developed through working in geographically distant and culturally diverse teamwork. Finally, some recommendations to use project-based social media tools while working with virtual teamwork in the classroom are provided.

Keywords: cultural competences, experiential learning, social media, teamwork, virtual group work

Procedia PDF Downloads 169
789 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 221
788 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles

Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas

Abstract:

The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.

Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning

Procedia PDF Downloads 62
787 From Service Delivery Strikes to Anti-Immigrant March: A Paradigm Shift in the Post-Colonial Discourse of Politics of Belonging in the Twenty-First Century South Africa

Authors: Israel Ekanade, Richard Molapo, Patrick Dzimiri, Isaac Ndlovu

Abstract:

This study aims to unravel the myth behind animosity towards foreign nationals in South Africa. Systemic violence against foreign African nationals since 2008 to date necessitates critical research with regards to migration issues connected to social upheavals. Extensive research ubiquitously tagged black-on-black violence as xenophobia or Afrophobia. In all, escalation of violence indicates a connotation of belonging. With unemployment rates approaching a crescendo, other vices have also soared in the same regard. As a result, this present generation seems cynical as the South African state has not fulfilled her obligations towards the indigent population; a situation pitching locals against foreigners. Locals have repeatedly blamed African foreign nationals for the economic downturn, using service delivery strikes to express their grievances. These strikes have continued unabatedly over the years but February 2017 marked a turning point in ‘insider-outsider’ relations as the strike was now turned to an anti-immigrant march resulting into widespread violence as the police failed to restore normalcy at some point. Over time, migration has been a harbinger of violence against the foreign black population in South Africa. Our paper encourages the state and civil society to invent new peace-building mechanisms to reduce xenophobic orchestrated violence. Our paper also contends that since the political class has hijacked the situation by using the youths for political propaganda during crises periods, a re-education of the political class and a culture of tolerance is inevitable for peace and harmony between locals and foreigners in post-apartheid South Africa.

Keywords: anti-immigrant march, politics of belonging, service delivery strikes, South Africa

Procedia PDF Downloads 293
786 Probabilistic-Based Design of Bridges under Multiple Hazards: Floods and Earthquakes

Authors: Kuo-Wei Liao, Jessica Gitomarsono

Abstract:

Bridge reliability against natural hazards such as floods or earthquakes is an interdisciplinary problem that involves a wide range of knowledge. Moreover, due to the global climate change, engineers have to design a structure against the multi-hazard threats. Currently, few of the practical design guideline has included such concept. The bridge foundation in Taiwan often does not have a uniform width. However, few of the researches have focused on safety evaluation of a bridge with a complex pier. Investigation of the scouring depth under such situation is very important. Thus, this study first focuses on investigating and improving the scour prediction formula for a bridge with complicated foundation via experiments and artificial intelligence. Secondly, a probabilistic design procedure is proposed using the established prediction formula for practical engineers under the multi-hazard attacks.

Keywords: bridge, reliability, multi-hazards, scour

Procedia PDF Downloads 361
785 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients

Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga

Abstract:

In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.

Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence

Procedia PDF Downloads 853
784 Linking Access to Land, Tenure Security with Food Sufficiency of Tenants/Landless or Small Holder Farmers of Parsa District

Authors: Subesh Panta

Abstract:

The land is a one of the major boosting factors of production for the agricultural country like Nepal where access to land has been a major source of livelihood of tenants and small farmers. But there is an absence of secure land tenure arrangement which drastically affect the overall production of farmers leading towards food insecurity. Sharecropping is practiced in Nepal especially in tarai region from early period, but there is the gap in the academic study whether the sharecropping has benefitted tenant farmers and make them food sufficient or not. This study attempts to find out the food sufficiency among the tenant households. The research was carried in the three VDCs of Parsa district -Paterwa (Sugauli), Jitpur and Nirchuta. A total of 111 households were determined as the sample size from each of the three VDCs was randomly visited for interview in the study. The size of land rent-in was found to be very small and fragmented. At the same time, the land tenure security was not found to be secured among the tenants. Due to lack of land tenure security, on one hand tenants and small farmers were not found to be motivated to investment in agriculture as they need to share fifty percent of their production with the land owners, and on other hand land owners were also not interested in investing as they have other alternative sources of livelihood rather than agriculture. In conclusion, the study highpoint that the crop production and food sufficiency level of the tenants’ farmers of the Parsa district are decreasing. Many tenants’ farmers are seeking alternative opportunities for livelihood rather than sharecropping due to insecure land tenure, feudalistic practice, lack of storage for agriculture production, lack of proper agro-market. The situation is such that, if no action is taken timely, there may be a situation that we will have to depend on imports for all the food requirements. Thus, the study discloses that the sharecropping could act as catalyst for ensuring food sufficiency for all, if proper land tenure police are promoted to tenants/small farmers with legal titles to their land or promoted with sustainable agriculture methods.

Keywords: agriculture, food sufficiency, land, tenant farmes

Procedia PDF Downloads 232
783 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 59
782 Between Leader-Member Exchange and Toxic Leadership: A Theoretical Review

Authors: Aldila Dyas Nurfitri

Abstract:

Nowadays, leadership has became the one of main issues in forming organization groups even countries. The concept of a social contract between the leaders and subordinates become one of the explanations for the leadership process. The interests of the two parties are not always the same, but they must work together to achieve both goals. Based on the concept at the previous it comes “The Leader Member Exchange Theory”—well known as LMX Theory, which assumes that leadership is a process of social interaction interplay between the leaders and their subordinates. High-quality LMX relationships characterized by a high carrying capacity, informal supervision, confidence, and power negotiation enabled, whereas low-quality LMX relationships are described by low support, large formal supervision, less or no participation of subordinates in decision-making, and less confidence as well as the attention of the leader Application of formal supervision system in a low LMX behavior was in line with strict controls on toxic leadership model. Leaders must be able to feel toxic control all aspects of the organization every time. Leaders with this leadership model does not give autonomy to the staff. This behavior causes stagnation and make a resistant organizational culture in an organization. In Indonesia, the pattern of toxic leadership later evolved into a dysfunctional system that is growing rapidly. One consequence is the emergence of corrupt behavior. According to Kellerman, corruption is defined as a pattern and some subordinates behave lie, cheat or steal to a degree that goes beyond the norm, they put self-interest than the common good.According to the corruption data in Indonesia based on the results of ICW research on 2012 showed that the local government sector ranked first with 177 cases. Followed by state or local enterprises as much as 41 cases. LMX is defined as the quality of the relationship between superiors and subordinates are implications for the effectiveness and progress of the organization. The assumption of this theory that leadership as a process of social interaction interplay between the leaders and his followers are characterized by a number of dimensions, such as affection, loyalty, contribution, and professional respect. Meanwhile, the toxic leadership is dysfunctional leadership in organization that is led by someone with the traits are not able to adjust, do not have integrity, malevolent, evil, and full of discontent marked by a number of characteristics, such as self-centeredness, exploiting others, controlling behavior, disrespecting others, suppress innovation and creativity of employees, and inadequate emotional intelligence. The leaders with some characteristics, such as high self-centeredness, exploiting others, controlling behavior, and disrespecting others, tends to describe a low LMX relationships directly with subordinates compared with low self-centeredness, exploiting others, controlling behavior, and disrespecting others. While suppress innovation and creativity of employees aspect and inadequate emotional intelligence, tend not to give direct effect to the low quality of LMX.

Keywords: leader-member exchange, toxic leadership, leadership

Procedia PDF Downloads 477
781 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings

Authors: Abdulwakeel B. Raji

Abstract:

This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.

Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence

Procedia PDF Downloads 125
780 Development of the Family Capacity of Management of Patients with Autism Spectrum Disorder Diagnosis

Authors: Marcio Emilio Dos Santos, Kelly C. F. Dos Santos

Abstract:

Caregivers of patients diagnosed with ASD are subjected to high stress situations due to the complexity and multiple levels of daily activities that require the organization of events, behaviors and socioemotional situations, such as immediate decision making and in public spaces. The cognitive and emotional requirement needed to fulfill this caregiving role exceeds the regular cultural process that adults receive in their process of preparation for conjugal and parental life. Therefore, in many cases, caregivers present a high level of overload, poor capacity to organize and mediate the development process of the child or patient about their care. Aims: Improvement in the cognitive and emotional capacities related to the caregiver function, allowing the reduction of the overload, the feeling of incompetence and the characteristic level of stress, developing a more organized conduct and decision making more oriented towards the objectives and procedural gains necessary for the integral development of the patient with diagnosis of ASD. Method: The study was performed with 20 relatives, randomly selected from a total of 140 patients attended. The family members were submitted to the Wechsler Adult Intelligence Scale III intelligence test and the Family assessment Management Measure (FaMM) questionnaire as a previous evaluation. Therapeutic activity in a small group of family members or caregivers, with weekly frequency, with a minimum workload of two hours, using the Feuerstein Instrumental Enrichment Cognitive Development Program - Feuerstein Instrumental Enrichment for ten months. Reapplication of the previous tests to verify the gains obtained. Results and Discussion: There is a change in the level of caregiver overload, improvement in the results of the Family assessment Management Measure and highlight to the increase of performance in the cognitive aspects related to problem solving, planned behavior and management of behavioral crises. These results lead to the discussion of the need to invest in the integrated care of patients and their caregivers, mainly by enabling cognitively to deal with the complexity of Autism. This goes beyond the simple therapeutic orientation about adjustments in family and school routines. The study showed that when the caregiver improves his/her capacity of management, the results of the treatment are potentiated and there is a reduction of the level of the caregiver's overload. Importantly, the study was performed for only ten months and the number of family members attended in the study (n = 20) needs to be expanded to have statistical strength.

Keywords: caregiver overload, cognitive development program ASD caregivers, feuerstein instrumental enrichment, family assessment management measure

Procedia PDF Downloads 113