Search results for: NDVI change detection
9322 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 779321 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA
Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell
Abstract:
Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis
Procedia PDF Downloads 2309320 Time Parameter Based for the Detection of Catastrophic Faults in Analog Circuits
Authors: Arabi Abderrazak, Bourouba Nacerdine, Ayad Mouloud, Belaout Abdeslam
Abstract:
In this paper, a new test technique of analog circuits using time mode simulation is proposed for the single catastrophic faults detection in analog circuits. This test process is performed to overcome the problem of catastrophic faults being escaped in a DC mode test applied to the inverter amplifier in previous research works. The circuit under test is a second-order low pass filter constructed around this type of amplifier but performing a function that differs from that of the previous test. The test approach performed in this work is based on two key- elements where the first one concerns the unique square pulse signal selected as an input vector test signal to stimulate the fault effect at the circuit output response. The second element is the filter response conversion to a square pulses sequence obtained from an analog comparator. This signal conversion is achieved through a fixed reference threshold voltage of this comparison circuit. The measurement of the three first response signal pulses durations is regarded as fault effect detection parameter on one hand, and as a fault signature helping to hence fully establish an analog circuit fault diagnosis on another hand. The results obtained so far are very promising since the approach has lifted up the fault coverage ratio in both modes to over 90% and has revealed the harmful side of faults that has been masked in a DC mode test.Keywords: analog circuits, analog faults diagnosis, catastrophic faults, fault detection
Procedia PDF Downloads 4429319 The Evaluation of Transformational Leadership Characteristics and Behaviors in Air Forces
Authors: Cuma Şimşek
Abstract:
Nowadays our globalized world is in a very rapid and sophisticated change. In the information age, notion of ‘information’ has begun to spread faster than ever also in this age, changes and transformation has gained tremendous momentum with technology boom. This continuous change and transformation, increased the competition between existing organizations and corporations. Besides, the organizations which show resistance to change has been put out of action in this competitive environment. It is not possible to sustain the existence of organizations without adapting to change and transformation by isolating itself from developments. As a consequence of improved communication and dialog possibilities by means of increasing knowledge level, there has been made a change of scene in administrative mentality, style and activation, especially in 21th century. Leaders emerge as the most important factor in this process of perception and success. At the same time it is not enough to adapt the alteration with conventional leadership abilities and behaviors. In parallel with alteration, new types of leadership are coming up. The optimal leadership type for our era and a trending topic "Transformational Leadership" is in great demand now. In this research, current situation of the Air Forces which use high-technology weapons efficiently, operates in an environment full of threats and is analyzed. It is evaluated that in order to be ready for war continuously and adjusting itself to changing terms of warfare atmosphere , Air Forces need ‘transformational leaders’ who are innovative, foreseeing and having a vision so that they can develop new methods and strategies for complex problems. Because it is the Air Force which is responsible for being the deterrent force of its country.Keywords: transformational, change, air force, leadership
Procedia PDF Downloads 4429318 Evaluation of the Role of Theatre for Development in Combating Climate Change in South Africa
Authors: Isaiah Phillip Smith, Sam Erevbenagie Usadolo, Pamela Theresa Tancsik
Abstract:
This paper is part of ongoing doctoral research that examines the role of Theatre for Development (TfD) in addressing climate change in the Mosuthu community in Reservoir Hills, Durban, South Africa. The context of the research underscores the pressing challenges facing South Africa, including drought, water shortages, deterioration of land, and civil unrest that require innovative approaches to the mitigation of climate change. TfD, described as a dialogical form of theatre that allows communities to express and contribute to development, emerges as a strategic medium for engaging communities in the process. The research problem focused on the unexamined potential of TfD in promoting community involvement and critical awareness of climate change. The study objectives included assessing the community's understanding of climate change, exploring TfD's potential as a participatory tool, examining its role in community mobilization, and developing recommendations for its effective implementation. A review of relevant literature and preliminary investigations in the research community indicates that TfD is an effective medium for promoting societal transformation and engaging marginalized communities. Through culturally resonant narratives, TfD can instill a deeper understanding of environmental challenges, fostering empathy and motivating behavioural changes. By integrating community voices and cultural elements, TfD serves as a powerful catalyst for promoting climate change awareness and inspiring collective action within the South African context. This research contributes to the global discourse on innovative approaches to climate change awareness and action.Keywords: TfD, climate change, community involvement, societal transformation, culture
Procedia PDF Downloads 579317 Fake News Detection for Korean News Using Machine Learning Techniques
Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.Keywords: fake news detection, Korean news, machine learning, text mining
Procedia PDF Downloads 2759316 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3059315 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel
Authors: F. M. Pisano, M. Ciminello
Abstract:
Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics
Procedia PDF Downloads 1249314 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1139313 Community Structure Detection in Networks Based on Bee Colony
Authors: Bilal Saoud
Abstract:
In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.Keywords: bee colony, networks, modularity, normalized mutual information
Procedia PDF Downloads 4069312 Using the Yield-SAFE Model to Assess the Impacts of Climate Change on Yield of Coffee (Coffea arabica L.) Under Agroforestry and Monoculture Systems
Authors: Tesfay Gidey Bezabeh, Tânia Sofia Oliveira, Josep Crous-Duran, João H. N. Palma
Abstract:
Ethiopia's economy depends strongly on Coffea arabica production. Coffee, like many other crops, is sensitive to climate change. An urgent development and application of strategies against the negative impacts of climate change on coffee production is important. Agroforestry-based system is one of the strategies that may ensure sustainable coffee production amidst the likelihood of future impacts of climate change. This system involves the combination of trees in buffer extremes, thereby modifying microclimate conditions. This paper assessed coffee production under 1) coffee monoculture and 2) coffee grown using an agroforestry system, under a) current climate and b) two different future climate change scenarios. The study focused on two representative coffee-growing regions of Ethiopia under different soil, climate, and elevation conditions. A process-based growth model (Yield-SAFE) was used to simulate coffee production for a time horizon of 40 years. Climate change scenarios considered were representative concentration pathways (RCP) 4.5 and 8.5. The results revealed that in monoculture systems, the current coffee yields are between 1200-1250 kg ha⁻¹ yr⁻¹, with an expected decrease between 4-38% and 20-60% in scenarios RCP 4.5 and 8.5, respectively. However, in agroforestry systems, the current yields are between 1600-2200 kg ha⁻¹ yr⁻¹; the decrease was lower, ranging between 4-13% and 16-25% in RCP 4.5 and 8.5 scenarios, respectively. From the results, it can be concluded that coffee production under agroforestry systems has a higher level of resilience when facing future climate change and reinforces the idea of using this type of management in the near future for adapting climate change's negative impacts on coffee production.Keywords: Albizia gummifera, CORDEX, Ethiopia, HADCM3 model, process-based model
Procedia PDF Downloads 1189311 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer
Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim
Abstract:
In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.Keywords: terahertz, non-destructive technique, void, IC package
Procedia PDF Downloads 4739310 Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography
Authors: Devansh Desai, Rahul Nigam
Abstract:
Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits.Keywords: thermal remote sensing, land surface temperature, crop water stress, evapotranspiration
Procedia PDF Downloads 709309 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 419308 The Effect of Social Structural Change on the Traditional Turkish Houses Becoming Unusable
Authors: Gamze Fahriye Pehlivan, Tulay Canitez
Abstract:
The traditional Turkish houses becoming unusable are a result of the deterioration of the balanced interaction between users and house (human and house) continuing during the history. Especially depending upon the change in social structure, the houses becoming neglected do not meet the desires of the users and do not have the meaning but the shelter are becoming unusable and are being destroyed. A conservation policy should be developed and renovations should be made in order to pass the traditional houses carrying the quality of a cultural and historical document presenting the social structure, the lifestyle and the traditions of its own age to the next generations and to keep them alive.Keywords: house, social structural change, social structural, traditional Turkish houses
Procedia PDF Downloads 2889307 The Influence of Psychological Capital Dimensions to Performance through OCB with Resistance to Change as Moderating Variable
Authors: Bambang Suko Priyono, Tristiana Rijanti
Abstract:
This study examines the influence of Psychological Capital Dimensions to Organizational Citizenship Behavior. There are four dimensions of Psychological Capital such as hope, optimism, resilience, and self-efficacy. It also tests the moderation effect of Resistance to Change in the relation between Psychological Capital’s dimensions and Organizational Citizenship Behavior, and the influence of Organizational Citizenship Behavior to employees’ performance. The data from the chosen 160 respondents from Public Service Institution is processed using multiple regression and interaction method. The study results in: 1) Hope positively significantly influences Organizational Citizenship Behavior, 2) Optimism positively significantly influences Organizational Citizenship Behavior, 3) Resilience positively significantly influences Organizational Citizenship Behavior, 4) Self-efficacy positively significantly influences Organizational Citizenship Behavior, 5) Resistance to change is moderating variable between hope and Organizational Citizenship Behavior, 6) Resistance to change is moderating variable between self-efficacy and Organizational Citizenship Behavior, 7) Organizational Citizenship Behavior positively significantly influences performance. On the contrary, resistance to change as a moderating variable is proven for hope and resilience.Keywords: organizational citizenship behavior, performance, psychological capital’s dimensions, and resistance to change
Procedia PDF Downloads 6859306 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting
Procedia PDF Downloads 2719305 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China
Authors: Chunyue Liu, Hongxing Jiang
Abstract:
Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane
Procedia PDF Downloads 2539304 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length
Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park
Abstract:
Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile
Procedia PDF Downloads 4759303 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.Keywords: fake news detection, natural language processing, machine learning, classification techniques.
Procedia PDF Downloads 1679302 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.Keywords: pedestrian detection, color segmentation, false positive, feature extraction
Procedia PDF Downloads 2819301 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum
Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson
Abstract:
Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots
Procedia PDF Downloads 3339300 Code Refactoring Using Slice-Based Cohesion Metrics and AOP
Authors: Jagannath Singh, Durga Prasad Mohapatra
Abstract:
Software refactoring is very essential for maintaining the software quality. It is an usual practice that we first design the software and then go for coding. But after coding is completed, if the requirement changes slightly or our expected output is not achieved, then we change the codes. For each small code change, we cannot change the design. In course of time, due to these small changes made to the code, the software design decays. Software refactoring is used to restructure the code in order to improve the design and quality of the software. In this paper, we propose an approach for performing code refactoring. We use slice-based cohesion metrics to identify the target methods which requires refactoring. After identifying the target methods, we use program slicing to divide the target method into two parts. Finally, we have used the concepts of Aspects to adjust the code structure so that the external behaviour of the original module does not change.Keywords: software refactoring, program slicing, AOP, cohesion metrics, code restructure, AspectJ
Procedia PDF Downloads 5139299 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils
Procedia PDF Downloads 3069298 Detection of Image Blur and Its Restoration for Image Enhancement
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.Keywords: image enhancement, motion analysis, motion detection, motion estimation
Procedia PDF Downloads 2889297 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4849296 Climate Change Impacts on Oyster Aquaculture - Part I: Identification of Key Factors
Authors: Emmanuel Okine Neokye, Xiuquan Wang, Krishna K. Thakur, Pedro Quijon, Rana Ali Nawaz, , Sana Basheer
Abstract:
Oysters are enriched with high-quality protein and are widely known for their exquisite taste. The production of oysters plays an important role in the local economies of coastal communities in many countries, including Atlantic Canada, because of their high economic value. However, because of the changing climatic conditions in recent years, oyster aquaculture faces potentially negative impacts, such as increasing water acidification, rising water temperatures, high salinity, invasive species, algal blooms, and other environmental factors. Although a few isolated effects of climate change on oyster aquaculture have been reported in recent years, it is not well understood how climate change will affect oyster aquaculture from a systematic perspective. In the first part of this study, we present a systematic review of the impacts of climate change and some key environmental factors affecting oyster production on a global scale. The study also identifies knowledge gaps and challenges. In addition, we present key research directions that will facilitate future investigations.Keywords: climate change, oyster production, oyster aquaculture, greenhouse gases
Procedia PDF Downloads 149295 A Phishing Email Detection Approach Using Machine Learning Techniques
Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani
Abstract:
Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning
Procedia PDF Downloads 3419294 Access to Climate Change Information Through the Implementation of the Paris Agreement
Authors: Ana Cristina A. P. Carvalho, Solange Teles Da Silva
Abstract:
In April, 174 countries signed the Paris Agreement, a multilateral agreement on climate change which deals with greenhouse gas emissions, mitigation, adaptation, finance, access to information, transparency, among other subjects related to the environment. Since then, Parties shall cooperate in taking measures, as appropriate, to enhance climate change education, training, public awareness, public participation and public access to information, recognizing the importance of these steps with respect to enhancing actions under this Agreement. This paper aims to analyze the consequences of this new rule in terms of the implementation of the Agreement, collecting data from Brazilian and Canadian legislations in order to identify if these countries have rules complying with the Treaty, the steps that have been already taken and if they could be used as examples for other countries. The analysis will take into consideration the different kinds of climate change information, means of transparency, reliability of the data and how to spread the information. The methodology comprehends a comparative legal research based on both the Paris Agreement and domestic laws of Brazil and Canada, as well as on doctrine and Court decisions. The findings can contribute to the implementation of the Paris Agreement through compliance with this Treaty at countries’ domestic and policy level.Keywords: climate change information, domestic legislation, Paris Agreement, public policy
Procedia PDF Downloads 3099293 Study on Measuring Method and Experiment of Arc Fault Detection Device
Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li
Abstract:
Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault
Procedia PDF Downloads 509