Search results for: tube-based robust MPC
553 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 367552 Assessing the Effects of Sub-Concussive Head Impacts on Clinical Measures of Neurologic Function
Authors: Gianluca Del Rossi
Abstract:
Sub-concussive impacts occur frequently in collision sports such as American tackle football. Sub-concussive level impacts are defined as hits to the head that do not result in the clinical manifestation of concussion injury. Presently, there is limited information known about the short-term effects of repeated sub-concussive blows to the head. Therefore, the purpose of this investigation was to determine if standard clinical measures could detect acute impairments in neurologic function resulting from the accumulation of sub-concussive impacts throughout a season of high school American tackle football. Simple reaction time using the ruler-drop test, and oculomotor performance using the King-Devick (KD) test, were assessed in 15 athletes prior to the start of the athletic season, then repeated each week of the season, and once following its completion. The mean reaction times and fastest KD scores that were recorded or calculated from each study participant and from each test session were analyzed to assess for change in reaction time and oculomotor performance over the course of the American tackle football season. Analyses of KD data revealed improvements in oculomotor performance from baseline measurements (i.e., decreased time), with most weekly comparisons to baseline being significantly different. Statistical tests performed on the mean reaction times obtained via the ruler-drop test throughout the season revealed statistically significant declines (i.e., increased time) between baseline and weeks 3, 4, 10, and 12 of the athletic season. The inconsistent and contrasting findings between KD data and reaction time demonstrate the need to identify more robust clinical measures to definitively assess if repeated sub-concussive impacts to the head are acutely detrimental to patients.Keywords: head injury, mTBI and sport, subclinical head trauma, sub-concussive impacts
Procedia PDF Downloads 205551 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis
Authors: R. Periyasamy, Deepak Joshi, Sneh Anand
Abstract:
Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis
Procedia PDF Downloads 499550 Analysis of Real Time Seismic Signal Dataset Using Machine Learning
Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.
Abstract:
Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection
Procedia PDF Downloads 124549 The Effect of Object Presentation on Action Memory in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf
Abstract:
Enacted tasks are typically remembered better than when the same task materials are only verbally encoded, a robust finding referred to as the enactment effect. It has been assumed that enactment effect is independent of object presence but the size of enactment effect can be increased by providing objects at study phase in adults. To clarify the issues in children, free recall and cued recall performance of action phrases with or without using real objects were compared in 410 school-aged children from four age groups (8, 10, 12 and 14 years old). In this study, subjects were instructed to learn a series of action phrases under three encoding conditions, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). Then, free recall and cued recall memory tests were administrated. The results revealed that the real object compared with imaginary objects improved recall performance in SPTs and EPTs, but more so in VTs. It was also found that the object presence was not necessary for the occurrence of the enactment effect but it was changed the size of enactment effect in all age groups. The size of enactment effect was more pronounced for imaginary objects than the real object in both free recall and cued recall memory tests in children. It was discussed that SPTs and EPTs deferentially facilitate item-specific and relation information processing and providing the objects can moderate the processing underlying the encoding conditions.Keywords: action memory, enactment effect, item-specific processing, object, relational processing, school-aged children
Procedia PDF Downloads 238548 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods
Authors: Kizito Ugochukwu Nwajeri
Abstract:
This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods
Procedia PDF Downloads 43547 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 58546 Family Firms Performance: Examining the Impact of Digital and Technological Capabilities using Partial Least Squares Structural Equation Modeling and Necessary Condition Analysis
Authors: Pedro Mota Veiga
Abstract:
This study comprehensively evaluates the repercussions of innovation, digital advancements, and technological capabilities on the operational performance of companies across fifteen European Union countries following the initial wave of the COVID-19 pandemic. Drawing insights from longitudinal data sourced from the 2019 World Bank business surveys and subsequent 2020 World Bank COVID-19 follow-up business surveys, our extensive examination involves a diverse sample of 5763 family businesses. In exploring the relationships between these variables, we adopt a nuanced approach to assess the impact of innovation and digital and technological capabilities on performance. This analysis unfolds along two distinct perspectives: one rooted in necessity and the other insufficiency. The methodological framework employed integrates partial least squares structural equation modeling (PLS-SEM) with condition analysis (NCA), providing a robust foundation for drawing meaningful conclusions. The findings of the study underscore a positive influence on the performance of family firms stemming from both technological capabilities and digital advancements. Furthermore, it is pertinent to highlight the indirect contribution of innovation to enhanced performance, operating through its impact on digital capabilities. This research contributes valuable insights to the broader understanding of how innovation, coupled with digital and technological capabilities, can serve as pivotal factors in shaping the post-COVID-19 landscape for businesses across the European Union. The intricate analysis of family businesses, in particular adds depth to the comprehension of the dynamics at play in diverse economic contexts within the European Union.Keywords: digital capabilities, technological capabilities, family firms performance, innovation, NCA, PLS-SEM
Procedia PDF Downloads 63545 Functional Feeding Groups and Trophic Levels of Benthic Macroinvertebrates Assemblages in Albertine Rift Rivers and Streams in South Western Uganda
Authors: Peace Liz Sasha Musonge
Abstract:
Behavioral aspects of species nutrition such as feeding methods and food type are archetypal biological traits signifying how species have adapted to their environment. This concept of functional feeding groups (FFG) analysis is currently used to ascertain the trophic levels of the aquatic food web in a specific microhabitat. However, in Eastern Africa, information about the FFG classification of benthic macroinvertebrates in highland rivers and streams is almost absent, and existing studies have fragmented datasets. For this reason, we carried out a robust study to determine the feed type, trophic level and FFGs, of 56 macroinvertebrate taxa (identified to family level) from Albertine rift valley streams. Our findings showed that all five major functional feeding groups were represented; Gatherer Collectors (GC); Predators (PR); shredders (SH); Scrapers (SC); and Filterer collectors. The most dominant functional feeding group was the Gatherer Collectors (GC) that accounted for 53.5% of the total population. The most abundant (GC) families were Baetidae (7813 individuals), Chironomidae NTP (5628) and Caenidae (1848). Majority of the macroinvertebrate population feed on Fine particulate organic matter (FPOM) from the stream bottom. In terms of taxa richness the Predators (PR) had the highest value of 24 taxa and the Filterer Collectors group had the least number of taxa (3). The families that had the highest number of predators (PR) were Corixidae (1024 individuals), Coenagrionidae (445) and Libellulidae (283). However, Predators accounted for only 7.4% of the population. The findings highlighted the functional feeding groups and habitat type of macroinvertebrate communities along an altitudinal gradient.Keywords: trophic levels, functional feeding groups, macroinvertebrates, Albertine rift
Procedia PDF Downloads 235544 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 156543 Socio-Economic Setting and Implications to Climate Change Impacts in Eastern Cape Province, South Africa
Authors: Kenneth Nhundu, Leocadia Zhou, Farhad Aghdasi, Voster Muchenje
Abstract:
Climate change poses increased risks to rural communities that rely on natural resources, such as forests, cropland and rangeland, waterways, and open spaces Because of their connection to the land and the potential for climate change to impact natural resources and disrupt ecosystems and seasons, rural livelihoods and well-being are disproportionately vulnerable to climate change. Climate change has the potential to affect the environment in a number of ways that place increased stress on everyone, but disproportionately on the most vulnerable populations, including the young, the old, those with chronic illness, and the poor. The communities in the study area are predominantly rural, resource-based and are generally surrounded by public or private lands that are dominated by natural resources, including forests, rangelands, and agriculture. The livelihoods of these communities are tied to natural resources. Therefore, targeted strategies to cope will be required. This paper assessed the household socio-economic characteristics and their implications to household vulnerability to climate change impacts in the rural Eastern Cape Province, South Africa. The results indicate that the rural communities are climate-vulnerable populations as they have a large proportion of people who are less economically or physically capable of adapting to climate change. The study therefore recommends that at each level, the needs, knowledge, and voices of vulnerable populations, including indigenous peoples and resource-based communities, deserve consideration and incorporation so that climate change policy (1) ensures that all people are supported and able to act, (2) provides as robust a strategy as possible to address a rapidly changing environment, and (3) enhances equity and justice.Keywords: climate change, vulnerable, socio-economic, livelihoods
Procedia PDF Downloads 355542 Biases in Macroprudential Supervision and Their Legal Implications
Authors: Anat Keller
Abstract:
Given that macro-prudential supervision is a relatively new policy area and its empirical and analytical research are still in their infancy, its theoretical foundations are also lagging behind. This paper contributes to the developing discussion on effective legal and institutional macroprudential supervision frameworks. In the first part of the paper, it is argued that effectiveness as a key benchmark poses some challenges in the context of macroprudential supervision such as the difficulty in proving causality between supervisory actions and the achievement of the supervisor’s mission. The paper suggests that effectiveness in the macroprudential context should, therefore, be assessed at the supervisory decision-making process (to be differentiated from the supervisory outcomes). The second part of the essay examines whether insights from behavioural economics can point to biases in the macroprudential decision-making process. These biases include, inter alia, preference bias, groupthink bias and inaction bias. It is argued that these biases are exacerbated in the multilateral setting of the macroprudential supervision framework in the EU. The paper then examines how legal and institutional frameworks should be designed to acknowledge and perhaps contain these identified biases. The paper suggests that the effectiveness of macroprudential policy will largely depend on the existence of clear and robust transparency and accountability arrangements. Accountability arrangements can be used as a vehicle for identifying and addressing potential biases in the macro-prudential framework, in particular, inaction bias. Inclusiveness of the public in the supervisory process in the form of transparency and awareness of the logic behind policy decisions may assist in minimising their potential unpopularity thus promoting their effectiveness. Furthermore, a governance structure which facilitates coordination of the macroprudential supervisor with other policymakers and incorporates outside perspectives and opinions could ‘break-down’ groupthink bias as well as inaction bias.Keywords: behavioural economics and biases, effectiveness of macroprudential supervision, legal and institutional macroprudential frameworks, macroprudential decision-making process
Procedia PDF Downloads 280541 Seismic Performance of Steel Shear Wall Using Experimental and Numerical Analysis
Authors: Wahab Abdul Ghafar, Tao Zhong, Baba Kalan Enamullah
Abstract:
Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic Performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high Performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study.
Procedia PDF Downloads 106540 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis
Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath
Abstract:
The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression
Procedia PDF Downloads 197539 A Policy Strategy for Building Energy Data Management in India
Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan
Abstract:
The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.Keywords: energy data, energy policy, energy efficiency, buildings
Procedia PDF Downloads 185538 Nighttime Power Generation Using Thermoelectric Devices
Authors: Abdulrahman Alajlan
Abstract:
While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management
Procedia PDF Downloads 60537 Decision Support Tool for Selecting Appropriate Sustainable Rainwater Harvesting Based System in Ibadan, Nigeria
Authors: Omolara Lade, David Oloke
Abstract:
The approach to water management worldwide is currently in transition, with a shift from centralised infrastructures to greater consideration of decentralised technologies, such as rainwater harvesting (RWH). However, in Nigeria, implementation of sustainable water management, such as RWH systems, is inefficient and social, environmental and technical barriers, concerns and knowledge gaps exist, which currently restrict its widespread utilisation. This inefficiency contributes to water scarcity, water-borne diseases, and loss of lives and property due to flooding. Meanwhile, several RWH technologies have been developed to improve SWM through both demand and storm-water management. Such technologies involve the use of reinforced concrete cement (RCC) storage tanks, surface water reservoirs and ground-water recharge pits as storage systems. A framework was developed to assess the significance and extent of water management problems, match the problems with existing RWH-based solutions and develop a robust ready-to-use decision support tool that can quantify the costs and benefits of implementing several RWH-based storage systems. The methodology adopted was the mixed method approach, involving a detailed literature review, followed by a questionnaire survey of household respondents, Nigerian Architects and Civil Engineers and focus group discussion with stakeholders. 18 selection attributes have been defined and three alternatives have been identified in this research. The questionnaires were analysed using SPSS, excel and selected statistical methods to derive weightings of the attributes for the tool. Following this, three case studies were modelled using RainCycle software. From the results, the MDA model chose RCC tank as the most appropriate storage system for RWH.Keywords: rainwater harvesting, modelling, hydraulic assessment, whole life cost, decision support system
Procedia PDF Downloads 371536 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy
Authors: Aneek Kuila, Yaron Paz
Abstract:
MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis
Procedia PDF Downloads 59535 Quantum Dot – DNA Conjugates for Biological Applications
Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret
Abstract:
Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.Keywords: bioimaging, cellular targeting, drug delivery, photostability
Procedia PDF Downloads 422534 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks
Authors: Hyunsun Lee, Yi Zhu
Abstract:
Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles
Procedia PDF Downloads 123533 Modifications in Design of Lap Joint of Fiber Metal Laminates
Authors: Shaher Bano, Samia Fida, Asif Israr
Abstract:
The continuous development and exploitation of materials and designs have diverted the attention of the world towards the use of robust composite materials known as fiber-metal laminates in many high-performance applications. The hybrid structure of fiber metal laminates makes them a material of choice for various applications such as aircraft skin panels, fuselage floorings, door panels and other load bearing applications. The synergistic effect of properties of metals and fibers reinforced laminates are responsible for their high damage tolerance as the metal element provides better fatigue and impact properties, while high stiffness and better corrosion properties are inherited from the fiber reinforced matrix systems. They are mostly used as a layered structure in different joint configurations such as lap and but joints. The FML layers are usually bonded with each other using either mechanical fasteners or adhesive bonds. This research work is also focused on modification of an adhesive bonded joint as a single lap joint of carbon fibers based CARALL FML has been modified to increase interlaminar shear strength and avoid delamination. For this purpose different joint modification techniques such as the introduction of spews and shoulder to modify the bond shape and use of nanofillers such as carbon nano-tubes as a reinforcement in the adhesive materials, have been utilized to improve shear strength of lap joint of the adhesively bonded FML layers. Both the simulation and experimental results showed that lap joint with spews and shoulders configuration have better properties due to stress distribution over a large area at the corner of the joint. The introduction of carbon nanotubes has also shown a positive effect on shear stress and joint strength as they act as reinforcement in the adhesive bond material.Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews
Procedia PDF Downloads 299532 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications
Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder
Abstract:
Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric
Procedia PDF Downloads 128531 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout
Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini
Abstract:
The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation
Procedia PDF Downloads 120530 A PRISMA Systematic Review: Parent Sensitivity in Autism Spectrum Disorder and Its Relationship With Child and Parent Characteristics
Authors: Gabrielle Veloso, Melanie Porter, Kelsie Boulton, Adam Guastella
Abstract:
The aim of the current systematic review was to examine child and parent factors and their associations with parent sensitivity towards children with Autism Spectrum Disorder (ASD). Eight bibliographic databases were used to identify peer-reviewed journal articles examining these associations via quantitative analyses, with parent sensitivity measured via validated and reliable observation coding systems. Thirty-one studies were finalized as having met full criteria for inclusion. The review found agreement across studies that parent sensitivity was positively associated with the child’s initiations and responsiveness toward their parent, with more frequent parent-directed behaviors providing greater opportunity for parents to act and react in sensitive manner. There was also substantial evidence that parent sensitivity predicted later growth in child language ability and child social skills. Other factors such as child attachment, parent insightfulness toward their child, and parent resolution of the diagnosis were also identified across a number of studies as being positively associated with parent sensitivity, however, interpretations of these findings were limited by the absence of covariates identified in the literature as explaining much of the variance in parent sensitivity. With respect to non-significant associations, the literature reliably found that parents showed sensitivity toward their child with ASD, regardless of child age, ASD symptomology, concurrent child social skills, and concurrent child cognitive abilities. The robust associations found in this review and their potential explanations can serve as a jump off point in identifying an understanding protective and risk factors for families of children with ASD. With regard to future directions in research, assessment of the studies’ methodological quality identified points for improvement with respect to the measurement of parent sensitivity, as well as the consideration of several important methodological confounds that may be controlled for in statistical analyses.Keywords: ASD, autism, parenting, parent sensitivity
Procedia PDF Downloads 146529 Manual Pit Emptiers and Their Heath: Profiles, Determinants and Interventions
Authors: Ivy Chumo, Sheillah Simiyu, Hellen Gitau, Isaac Kisiangani, Caroline Kabaria Kanyiva Muindi, Blessing Mberu
Abstract:
The global sanitation workforce bridges the gap between sanitation infrastructure and the provision of sanitation services through essential public service work. Manual pit emptiers often perform the work at the cost of their dignity, safety, and health as their work requires repeated heavy physical activities such as lifting, carrying, pulling, and pushing. This exposes them to occupational and environmental health hazards and risking illness, injury, and death. The study will extend the studies by presenting occupational health risks and suggestions for improvement in informal settlements of Nairobi, Kenya. This is a qualitative study conducted among sanitation stakeholders in Korogocho, Mukuru and Kibera informal settlements in Nairobi. Data were captured using digital voice recorders, transcribed and thematically analysed. The discussion notes were further supported by observational notes made during the interviews. These formed the basis for a robust picture of occupational health of manual pit emptiers; a lack or inappropriate use of protective clothing, and prolonged duration of working hours were described to contribute to the occupational health hazard. To continue working, manual pit emptiers had devised coping strategies which include working in groups, improvised protective clothing, sharing the available protective clothing, working at night and consuming alcohol drinks while at work. Many of these strategies are detrimental to their health. Occupational health hazards among pit emptiers are key for effective working and is as a result of a lack of collaboration amongst stakeholders linked to health, safety and lack of PPE of pit emptiers. Collaborations amongst sanitation stakeholders is paramount for health, safety, and in ensuring the provision and use of personal protective devices.Keywords: sanitation, occupational health, manual emptiers, informal settlements
Procedia PDF Downloads 199528 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management
Procedia PDF Downloads 491527 Post-Pandemic Public Space, Case Study of Public Parks in Kerala
Authors: Nirupama Sam
Abstract:
COVID-19, the greatest pandemic since the turn of the century, presents several issues for urban planners, the most significant of which is determining appropriate mitigation techniques for creating pandemic-friendly and resilient public spaces. The study is conducted in four stages. The first stage consisted of literature reviews to examine the evolution and transformation of public spaces during pandemics throughout history and the role of public spaces during pandemic outbreaks. The second stage is to determine the factors that influence the success of public spaces, which was accomplished by an analysis of current literature and case studies. The influencing factors are categorized under comfort and images, uses and activity, access and linkages, and sociability. The third stage is to establish the priority of identified factors for which a questionnaire survey of stakeholders is conducted and analyzing of certain factors with the help of GIS tools. COVID-19 has been in effect in India for the last two years. Kerala has the highest daily COVID-19 prevalence due to its high population density, making it more susceptible to viral outbreaks. Despite all preventive measures taken against COVID-19, Kerala remains the worst-affected state in the country. Finally, two live case studies of the hardest-hit localities, namely Subhash bose park and Napier Museum park in the Ernakulam and Trivandrum districts of Kerala, respectively, were chosen as study areas for the survey. The responses to the questionnaire were analyzed using SPSS for determining the weights of the influencing factors. The spatial success of the selected case studies was examined using the GIS interpolation model. Following the overall assessment, the fourth stage is to develop strategies and guidelines for planning public spaces to make them more efficient and robust, which further leads to improved quality, safety and resilience to future pandemics.Keywords: urban design, public space, covid-19, post-pandemic, public spaces
Procedia PDF Downloads 137526 Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction
Authors: Ben Haines, Li Bai
Abstract:
Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms.Keywords: 3D reconstruction, multiview stereo, particle swarm optimisation, photo consistency
Procedia PDF Downloads 203525 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity
Authors: Zi-Yan Chao
Abstract:
With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity
Procedia PDF Downloads 22524 The Role of Financial Literacy in Driving Consumer Well-Being
Authors: Amin Nazifi, Amir Raki, Doga Istanbulluoglu
Abstract:
The incorporation of technological advancements into financial services, commonly referred to as Fintech, is primarily aimed at promoting services that are accessible, convenient, and inclusive, thereby benefiting both consumers and businesses. Fintech services employ a variety of technologies, including Artificial Intelligence (AI), blockchain, and big data, to enhance the efficiency and productivity of traditional services. Cryptocurrency, a component of Fintech, is projected to be a trillion-dollar industry, with over 320 million consumers globally investing in various forms of cryptocurrencies. However, these potentially transformative services can also lead to adverse outcomes. For instance, recent Fintech innovations have been increasingly linked to misconduct and disservice, resulting in serious implications for consumer well-being. This could be attributed to the ease of access to Fintech, which enables adults to trade cryptocurrencies, shares, and stocks via mobile applications. However, there is little known about the darker aspects of technological advancements, such as Fintech. Hence, this study aims to generate scholarly insights into the design of robust and resilient Fintech services that can add value to businesses and enhance consumer well-being. Using a mixed-method approach, the study will investigate the personal and contextual factors influencing consumers’ adoption and usage of technology innovations and their impacts on consumer well-being. First, semi-structured interviews will be conducted with a sample of Fintech users until theoretical saturation is achieved. Subsequently, based on the findings of the first study, a quantitative study will be conducted to develop and empirically test the impacts of these factors on consumers’ well-being using an online survey with a sample of 300 participants experienced in using Fintech services. This study will contribute to the growing Transformative Service Research (TSR) literature by addressing the latest priorities in service research and shedding light on the impact of fintech services on consumer well-being.Keywords: consumer well-being, financial literacy, Fintech, service innovation
Procedia PDF Downloads 64