Search results for: trained athletes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1383

Search results for: trained athletes

483 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled

Authors: Rishabh Ambavanekar

Abstract:

Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.

Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis

Procedia PDF Downloads 119
482 Biodegradable Drinking Straws Made From Naturally Dried and Fallen Coconut Leaves: Impact on Rural Circular Economy and Environmental Sustainability

Authors: Saji Varghese

Abstract:

Naturally dried and fallen coconut leaves and found in abundance in India and other coconut growing regions of the world. These fallen coconut leaves are usually burnt by farmers in landfills and open kitchens, leading to CO2 and particulate emissions. The innovation of biodegradable drinking straws from naturally dried and fallen coconut leaves by this researcher and his team has opened up opportunities to create value out of this agri-waste leading to i. prevention of burning of these discarded leaves ii. income generating opportunities to women in rural areas of coconut growing regions iii. an alternative to single use plastic straws. The team has developed five special purpose machines, which are deployed in the three villages on a pilot basis where 36 women are employed. The women are trained in the use of these machines, and the straws which are in good demand are sold globally. The present paper analyses the prospective impact of this innovation on the incomes of women working at the straw production centres and the consequent impact on their standards of living, The paper also analyses the impact of this innovation in the reduction of CO2 and particulate emissions and makes a case for support from Govt and Non Govt organizations in coconut growing regions to set up straw production centres to boost rural circular economy and to reduce carbon footprint and eliminate plastic pollution

Keywords: drinking straws, coconut leaves, circular economy, sustainability

Procedia PDF Downloads 138
481 Prevalence of Near Visual Impairment and Associated Factors among School Teachers in Gondar City, North West Ethiopia, 2022

Authors: Bersufekad Wubie

Abstract:

Introduction: Near visual impairment is presenting near visual acuity of the eye worse than N6 at a 40 cm distance. Teachers' regular duties, such as reading books, writing on the blackboard, and recognizing students' faces, need good near vision. If a teacher has near-visual impairment, the work output is unsatisfactory. Objective: The study was aimed to assess the prevalence and associated factors near vision impairment among school teachers at Gondar city Northwest Ethiopia, August 2022. Methods: To select 567 teachers in Gondar city schools, an institutional-based cross-sectional study design with a multistage sampling technique were used. The study was conducted in selected schools from May 1 to May 30, 2022. Trained data collectors used well-structured Amharic and English language questionnaires and ophthalmic instruments for examination. The collected data were checked for completeness and entered into Epi data version 4.6, then exported to SPSS version 26 for further analysis. A binary and multivariate logistic regression model was fitted. And associated factors of the outcome variable. Result: The prevalence of near visual impairment was 64.6%, with a confidence interval of 60.3%–68.4%. Near visual impairment was significantly associated with age >= 35 years (AOR: 4.90 at 95% CI: 3.15, 7.65), having prolonged years of teaching experience (AOR: 3.29 at 95% CI: 1.70, 4.62), having a history of ocular surgery (AOR: 1.96 at 95% CI: 1.10, 4.62), smokers (AOR: 2.21 at 95% CI: 1.22, 4.07), history of ocular trauma (AOR : 1.80 at 95%CI:1.11,3.18 and uncorrected refractive error (AOR:2.01 at 95%CI:1.13,4.03). Conclusion and recommendations: This study showed the prevalence of near vision impairment among school teachers was high, and it is not a problem of the presbyopia age group alone; it also happens at a young age. So teachers' ocular health should be well accommodated in the school's eye health.

Keywords: Gondar, near visual impairment, school, teachers

Procedia PDF Downloads 138
480 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
479 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 210
478 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136
477 Prevalence Pediculosis and Associated Risk Factors in Primary-School Children of Mazandaran Province, Iran, 2012-2013

Authors: Seyyed Farzad Motevalli-Haghi, Javad Rafinejad, Mahboobeh Hosseni, Jamshid Yazdani-Charati, Behzad Parsi

Abstract:

Background and purpose: Pediculosis is a worldwide public health concern. This descriptive study was performed on primary-school-aged children to determine the prevalence of pediculosis and its risk factors in Mazandaran Province, Iran, on basis of geographic information system (GIS). Materials and methods: A random sampling method was used to select 45237 school-aged children from Sari to Ramsar cities during September 2012 to June 2013. Data were collected from the selected schools by five trained nursing inspectors. A detailed questionnaire was filled for each child prior to hair examination following which examination was carried out to detect head lice as well as eggs/nits. Data were analyzed chi-square test. Finally, the GIS map was obtained in province informational chart. Results: 823 primary-school children (of 45237) were infected with lice in Mazandaran Province. The mean infection prevalence was 1.4% in cities 5.64% in rural area from Sari to Ramsar. There were significant relationships between pediculosis and some factors (P<0.05). GIS map revealed that the contamination was less in west than in east and central regions. Conclusion: Increasing awareness and training of teachers and parents, as well as improving standards of personal health can significantly reduce the prevalence of pediculosis.

Keywords: pediculosis capitis, primary school children, epidemiology, geographic information system (GIS), Mazandaran, Iran

Procedia PDF Downloads 551
476 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 76
475 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 252
474 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 124
473 Microbial Dynamics and Sensory Traits of Spanish- and Greek-Style Table Olives (Olea europaea L. cv. Ascolana tenera) Fermented with Sea Fennel (Crithmum maritimum L.)

Authors: Antonietta Maoloni, Federica Cardinali, Vesna Milanović, Andrea Osimani, Ilario Ferrocino, Maria Rita Corvaglia, Luca Cocolin, Lucia Aquilanti

Abstract:

Table olives (Olea europaea L.) are among the most important fermented vegetables all over the world, while sea fennel (Crithmum maritimum L.) is an emerging food crop with interesting nutritional and sensory traits. Both of them are characterized by the presence of several bioactive compounds with potential beneficial health effects, thus representing two valuable substrates for the manufacture of innovative vegetable-based preserves. Given these premises, the present study was aimed at exploring the co-fermentation of table olives and sea fennel to produce new high-value preserves. Spanish style or Greek style processing method and the use of a multiple strain starter were explored. The preserves were evaluated for their microbial dynamics and key sensory traits. During the fermentation, a progressive pH reduction was observed. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, whereas Enterobacteriaceae decreased during fermentation. An evolution of the microbiota was revealed by metataxonomic analysis, with Lactiplantibacillus plantarum dominating in the late stage of fermentation, irrespective of processing method and use of the starter. Greek style preserves resulted in more crunchy and less fibrous than Spanish style one and were preferred by trained panelists.

Keywords: lactic acid bacteria, Lactiplantibacillus plantarum, metataxonomy, panel test, rock samphire

Procedia PDF Downloads 129
472 Challenges Faced by Teachers during Teaching with Developmental Disable Students at Primary Level in Lahore

Authors: Zikra Faiz, Nisar Abid, Muhammad Waqas

Abstract:

This study aim to examine the challenges faced by teachers during teaching to those students who are intellectually disable, suffering from autism spectrum disorder, learning disability, and ADHD at the primary level. The descriptive research design of quantitative approach was adopted to conduct this study; a cross-sectional survey method was used to collect data. The sample was comprised of 258 (43 male and 215 female) teachers who teach at special education institutes of Lahore district selected through proportionate stratified random sampling technique. Self-developed questionnaire was used which was comprised of 22 closed-ended items. Collected data were analyzed through descriptive and inferential statistical techniques by using Statistical Package for Social Sciences (SPSS) version 21. Results show that teachers faced problems during group activities, to handle bad behavior and different disabilities of students. It is concluded that there was a significant difference between male and female teachers perceptions about challenges faced during teaching with developmental disable students. Furthermore, there was a significant difference exist in the perceptions of teachers regarding challenges faced during teaching to students with developmental disabilities in term of teachers’ age and area of specialization. It is recommended that developmentally disable student require extra attention so that, teacher should trained through pre-service and in-service training to teach developmentally disabled students.

Keywords: intellectual disability, autism spectrum disorder, ADHD, learning disability

Procedia PDF Downloads 139
471 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques

Authors: Jonathan Iworiso

Abstract:

Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.

Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains

Procedia PDF Downloads 107
470 Effect of Sodium Chloride Replacement with Potassium Chloride on Qualities of Longan Seasoning Powder

Authors: Narin Charoenphun, Praopen Rattanadee, Chaiporn Phaephiromrat

Abstract:

One of the most important intricacies of cooking is seasoning which is the process of adding salt, herbs, or spices to food to enhance the flavor. Sodium chloride (NaCl) was added in seasoning powder for taste-improving and shelf life of products. However, the raised blood pressure caused by eating too much NaCl may damage the arteries leading to the heart. Interestingly, NaCl replacement with other substance is essential for consumer. The objective of this study was to investigate the effects of NaCl replacement with potassium chloride (KCl) on the sensory characteristics and physiochemical properties of longan seasoning powder. Five longan seasoning Powder were replaced sodium chloride with KCl at 0, 25, 50 75 and 100%. Mixture design with 2 replications was performed. Sensory characteristics on overall flavor, saltiness, sweetness, bitterness and overall liking were investigated using 12 descriptive trained panelists. Results revealed that NaCl and KCl had effects on saltiness, bitterness and overall liking. As the level of KCl substituted increased, the overall flavor and sweetness of powdered seasoning from longan were not significantly (p < 0.05). This resulted in the decrease of overall liking of the products. In addition, increasing the level of KCl substituted resulted in the drop of saltiness but out of bitterness of the products. Saltiness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Bitterness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Moreover, consumer acceptance test was conducted (n=100). In conclusion, the optimum formulation contained of 32.0% longan powder, 28.0% sugar, 15.0% NaCl, 5% KCl, 16.0% pork powder, 3.0% pepper powder, and 3.0% garlic powder that would meet acceptability scores of at least 7 or like moderately.

Keywords: longan, seasoning, NaCl, KCl

Procedia PDF Downloads 253
469 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 322
468 Massive Deployments of Insurgent Intelligence by Violent Non-state Actors (VNSAs) in the 21st Century and Threats to Global Security

Authors: Temitope Francis Abiodun

Abstract:

The practice of intelligence is not limited to the machinery of a nation state alone, yet not much research or analysis has been directed towards the spy-crafts and tradecrafts engaged in by violent non-state actors (VNSAs) in the international community. The rise of 'private sector intelligence' in more recent years has only just begun to be interrogated by practitioners and academics. However, the use of intelligence by insurgents and other groups assembled to achieve varied forms of politico-military outcomes has often been overlooked. This paper examined the factors and conditions that gave rise to an increase in violent non-state actors (VNSAs), strategies aiding their deployment of insurgent intelligence, and as well the implications of their activities on global security. The failed state theory was adopted, while a descriptive research design served as the framework for the study. Data were collected from primary and secondary sources. The paper, however, revealed there were massive deployments of insurgent intelligence by violent non-state actors in contrast to a faulty pre-conception that insurgents were not as highly trained in deployment of intelligence as state actors, having assumed that the VNSAs lacked the sophistication to produce intelligence. However, the strategic objectives of insurgents (VNSAs) were revealed to depend on well-organized information gathering operations that feed into the tactical executions of their insurgency. The paper recommends, therefore, there is a need for adequate training on the part of security personnel in the states to be alive to their responsibilities; and there is also a need to ensure adequate border control and management to checkmate the influx of the various violent or deadly movements across global frontiers.

Keywords: terrorism, non-violent state actors, private sector intelligence, security

Procedia PDF Downloads 137
467 The Impact of Training on Commitment, Retention, Job Satisfaction and Performance of Private Sector Banks in Bangladesh

Authors: Md. Arifur Rahman, Ummya Salma, Nazrul Islam

Abstract:

Private sector banking business is one of the leading businesses of Bangladesh as it is profitable and directly attached with the economic development of the country. Training has got very high importance in this sector for increasing the performance of the banks. It has a long term impact on a number of aspects of the bank employees and their performances. It is an investment of the organization that is permanent in nature. Study shows that there are positive relationships between training and the employee commitment, job retention, job satisfaction and company performance. Training is also concerned with promotion, compensation, work-life policies, career development, task and contextual performance of the employees. As such, this paper aims at identifying the impact of training on employee commitment, job retention, job satisfaction and the performance of the private sector banks in Bangladesh. Both primary and secondary data were used to conduct the study. Data were collected from the bank officers who were trained in their banks. Both descriptive and inferential statistics were used to analyze the data. Descriptive statistics were used to describe the present situation of the banks and their employees. Inferential statistics were used to identify the factors and their significance concerned with training. Results show that there is a significant relationship between the performance and the training of the employees. It also shows that the training can motivate employees and encourage them to work hard. However, this study did not find any relationship between the commitment of the employees and the training. This study suggests that for increasing the performance of the banks, training is a must which is to be given deliberately for improving the specific skills of the bank employees.

Keywords: training, promotion, compensation, work-life policies

Procedia PDF Downloads 286
466 Determinants of Teenage Pregnancy: The Case of School Adolescents of Arba Minch Town, Southern Ethiopia

Authors: Aleme Mekuria, Samuel Mathewos

Abstract:

Background: Teenage pregnancy has long been a worldwide social, economic and educational concern for the developed, developing and underdeveloped countries. Studies on adolescent sexuality and pregnancy are very limited in our country. Therefore, this study aims at assessing the prevalence of teenage pregnancy and its determinants among school adolescents of Arba Minch town. Methods: Institution- based, cross-sectional study was conducted from 20-30 March 2014. Systematic sampling technique was used to select a total of 578 students from four schools of the town. Data were collected by trained data collectors using a pre-tested, self-administered structured questionnaire. The analysis was made using the software SPSS version 20.0 statistical packages. Multivariate logistic regression was used to identify the predictors of teenage pregnancy. Results: The prevalence of teenage pregnancy among school adolescents of Arba Minch town was 7.7%. Being grade11(AOR=4.6;95%CI:1.4,9.3) and grade12 student (AOR=5.8;95% CI:1.3,14.4), not knowing the correct time to take emergency contraceptives(AOR=3.3;95%CI:1.4,7.4), substance use(AOR=3.1;95%CI:1.1,8.8), living with either of biological parents (AOR=3.3;95%CI:1.1,8.7) and poor parent-daughter interaction (AOR=3.1;95%CI:1.1,8.7) were found to be significant predictors of teenage pregnancy. Conclusion: This study revealed a high level of teenage pregnancy among school adolescents of Arba Minch town. A significant number of adolescent female school students were at risk of facing the challenges of teenage pregnancy in the study area. School-based reproductive health education and strong parent-daughter relationships should be strengthened.

Keywords: adolescent, Arba minch, risk factors, school, southern Ethiopia, teenage pregnancy

Procedia PDF Downloads 349
465 Trauma System in England: An Overview and Future Directions

Authors: Raheel Shakoor Siddiqui, Sanjay Narayana Murthy, Manikandar Srinivas Cheruvu, Kash Akhtar

Abstract:

Major trauma is a dynamic public health epidemic that is continuously evolving. Major trauma care services rely on multi-disciplinary team input involving highly trained pre and in-hospital critical care teams. Pre-hospital critical care teams (PHCCTs), major trauma centres (MTCs), trauma units, and rehabilitation facilities all form an efficient and organised trauma system. England comprises 27 MTCs funded by the National Health Service (NHS). Major trauma care entails enhanced resuscitation protocols coupled with the expertise of dedicated trauma teams and rapid radiological imaging to improve trauma outcomes. Literature reports a change in the demographic of major trauma as elderly patients (silver trauma) with injuries sustained from a fall of 2 metres or less commonly present to services. Evidence of an increasing population age with multiple comorbidities necessitates treatment within the first hour of injury (golden hour) to improve trauma survival outcomes. Staffing and funding pressures within the NHS have subsequently led to a shortfall of available physician-led PHCCTs. Thus, there is a strong emphasis on targeted research and funding to appropriately deploy resources to deprived areas. This review article will discuss the current English trauma system whilst critically appraising present challenges, identifying insufficiencies, and recommending aims for an improved future trauma system in England.

Keywords: trauma, orthopaedics, major trauma, trauma system, trauma network

Procedia PDF Downloads 187
464 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 19
463 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 322
462 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 72
461 Analysis of Computer Science Papers Conducted by Board of Intermediate and Secondary Education at Secondary Level

Authors: Ameema Mahroof, Muhammad Saeed

Abstract:

The purpose of this study was to analyze the papers of computer science conducted by Board of Intermediate and Secondary Education with reference to Bloom’s taxonomy. The present study has two parts. First, the analysis is done on the papers conducted by Board of Intermediate of Secondary Education on the basis of basic rules of item construction especially Bloom’s (1956). And the item analysis is done to improve the psychometric properties of a test. The sample included the question papers of computer science of higher secondary classes (XI-XII) for the years 2011 and 2012. For item analysis, the data was collected from 60 students through convenient sampling. Findings of the study revealed that in the papers by Board of intermediate and secondary education the maximum focus was on knowledge and understanding level and very less focus was on the application, analysis, and synthesis. Furthermore, the item analysis on the question paper reveals that item difficulty of most of the questions did not show a balanced paper, the items were either very difficult while most of the items were too easy (measuring knowledge and understanding abilities). Likewise, most of the items were not truly discriminating the high and low achievers; four items were even negatively discriminating. The researchers also analyzed the items of the paper through software Conquest. These results show that the papers conducted by Board of Intermediate and Secondary Education were not well constructed. It was recommended that paper setters should be trained in developing the question papers that can measure various cognitive abilities of students so that a good paper in computer science should assess all cognitive abilities of students.

Keywords: Bloom’s taxonomy, question paper, item analysis, cognitive domain, computer science

Procedia PDF Downloads 150
460 Implementing a Strategy of Reliability Centred Maintenance (RCM) in the Libyan Cement Industry

Authors: Khalid M. Albarkoly, Kenneth S. Park

Abstract:

The substantial development of the construction industry has forced the cement industry, its major support, to focus on achieving maximum productivity to meet the growing demand for this material. Statistics indicate that the demand for cement rose from 1.6 billion metric tons (bmt) in 2000 to 4bmt in 2013. This means that the reliability of a production system needs to be at the highest level that can be achieved by good maintenance. This paper studies the extent to which the implementation of RCM is needed as a strategy for increasing the reliability of the production systems component can be increased, thus ensuring continuous productivity. In a case study of four Libyan cement factories, 80 employees were surveyed and 12 top and middle managers interviewed. It is evident that these factories usually breakdown more often than once per month which has led to a decline in productivity, they cannot produce more than 50% of their designed capacity. This has resulted from the poor reliability of their production systems as a result of poor or insufficient maintenance. It has been found that most of the factories’ employees misunderstand maintenance and its importance. The main cause of this problem is the lack of qualified and trained staff, but in addition, it has been found that most employees are not found to be motivated as a result of a lack of management support and interest. In response to these findings, it has been suggested that the RCM strategy should be implemented in the four factories. The paper shows the importance of considering the development of maintenance strategies through the implementation of RCM in these factories. The purpose of it would be to overcome the problems that could reduce the level of reliability of the production systems. This study could be a useful source of information for academic researchers and the industrial organisations which are still experiencing problems in maintenance practices.

Keywords: Libyan cement industry, reliability centred maintenance, maintenance, production, reliability

Procedia PDF Downloads 390
459 Health and Safety of Red Cross Workers in Long-Term Homes during Early Days of the COVID-19 Pandemic: A Human Performance Perspective

Authors: Douglas J. Kube

Abstract:

At the beginning of the COVID-19 pandemic, the Canadian Red Cross deployed workers into long-term care homes across Canada to support our most vulnerable citizens. It began by recruiting and training small teams of workers to provide non-clinical services for facilities in outbreak. Deployed workers were trained on an approach based on successful Red Cross deployments used with Ebola in which zones were established, levels of protection used, and strict protocols followed to prevent exposure. This paper addresses aspects of human performance through a safety culture lens. The Red Cross deployments highlight valuable insights and are an excellent case study in the principles of human performance and organizational culture. This paper looks at human performance principles, including human fallibility, predictability of error-likely situations, avoiding events by understanding reasons mistakes occur, and the influence on behaviour by organizational factors. This study demonstrates how the Red Cross’s organizational culture and work design positively influenced performance to protect workers and residents/clients. Lastly, this paper shares lessons that can be applied in many workplaces to improve worker health and safety and safety culture. This critical examination is based on the author’s experience as a Senior Occupational Health and Safety Advisor with the Red Cross during the pandemic as part of the team responsible for developing and implementing biological safety practices in long-term care deployments.

Keywords: COVID, human performance, organizational culture, work design

Procedia PDF Downloads 58
458 From Proficiency to High Accomplishment: Transformative Inquiry and Institutionalization of Mentoring Practices in Teacher Education in South-Western Nigeria

Authors: Michael A. Ifarajimi

Abstract:

The transition from being a graduate teacher to a highly accomplished teacher has been widely portrayed in literature as challenging. Pre-service teachers are troubled with complex issues such as implementing, assessment, meeting prescribed learning outcomes, taking risks, supporting eco sustainability, etc. This list is not exhaustive as they are further complicated when the concerns extend beyond the classroom into the broader school setting and community. Meanwhile, the pre-service teacher education programme as is currently run in Nigeria, cannot adequately prepare newly trained teachers for the realities of classroom teaching. And there appears to be no formal structure in place for mentoring such teachers by the more seasoned teachers in schools. The central research question of the study, therefore, is which institutional framework can be distinguished for enactment in mentoring practices in teacher education? The study was conducted in five colleges of education in South-West Nigeria, and a sample of 1000 pre-service teachers on their final year practicum was randomly selected from the colleges of education. A pre-service teacher mentorship programme (PTMP) framework was designed and implemented, with a focus on the impact of transformative inquiry on the pre-service teacher support system. The study discovered a significant impact of mentoring on pre-service teacher’s professional transformation. The study concluded that institutionalizing mentorship through transformative inquiry is a means to sustainable teacher education, professional growth, and effective classroom practice. The study recommended that the government should enact policies that will promote mentoring in teacher education and establish a framework for the implementation of mentoring practices in the colleges of education in Nigeria.

Keywords: institutionalization, mentoring, pre-service teachers teacher education, transformative inquiry

Procedia PDF Downloads 133
457 Long-Term Foam Roll Intervention Study of the Effects on Muscle Performance and Flexibility

Authors: T. Poppendieker

Abstract:

A new innovative tool for self-myofascial release is widely and increasingly used among athletes of various sports. The application of the foam roll is suggested to improve muscle performance and flexibility. Attempts to examine acute and somewhat long term effects of either have been conducted over the past ten years. However, the results of muscle performance have been inconsistent. It is suggested that regular use over a long period of time results in a different, muscle performance improving outcome. This study examines long-term effects of regular foam rolling combined with a short plyometric routine vs. solely the same plyometric routine on muscle performance and flexibility over a period of six weeks. Results of counter movement jump (CMJ), squat jump (SJ), and isometric maximal force (IMF) of a 90° horizontal squat in a leg-press will serve as parameters for muscle performance. Data on the range of motion (ROM) of the sit and reach test will be used as a parameter for the flexibility assessment. Muscle activation will be measured throughout all tests. Twenty male and twenty female members of a Frankfurt area fitness center chain (7.11) with an average age of 25 years will be recruited. Women and men will be randomly assigned to a foam roll (FR) and a control group. All participants will practice their assigned routine three times a week over the period of six weeks. Tests on CMJ, SJ, IMF, and ROM will be taken before and after the intervention period. The statistic software program SPSS 22 will be used to analyze the data of CMJ, SJ, IMF, and ROM under consideration of muscle activation by a 2 x 2 x 2 (time of measurement x gender x group) analysis of variance with repeated measures and dependent t-test analysis of pre- and post-test. The alpha level for statistic significance will be set at p ≤ 0.05. It is hypothesized that a significant difference in outcome based on gender differences in all four tests will be observed. It is further hypothesized that both groups may show significant improvements in their performance in the CMJ and SJ after the six-week period. However, the FR group is hypothesized to achieve a higher improvement in the two jump tests. Moreover, the FR group may increase IMF as well as flexibility, whereas the control group may not show likewise progress. The results of this study are crucial for the understanding of long-term effects of regular foam roll application. The collected information on the matter may help to motivate the incorporation of foam rolling into training routines, in order to improve athletic performances.

Keywords: counter movement jump, foam rolling, isometric maximal force, long term effects, self-myofascial release, squat jump

Procedia PDF Downloads 286
456 Factors Affecting Adequate Utilisation of Ante-natal Health Care Services among Pregnant Women in Dutsin-Ma Local Government Area of Katsina State

Authors: Ilim Moses Msughter

Abstract:

The study was carried out to examine the availability of Ante-natal care services and the socio-cultural factors affecting the utilization of these services in Dutsin-Ma Local Government Area of Katsina State. Four specific objectives were outlined as thus to examine the availability of antenatal care services in Dutsin-Ma local government area, to identify the socio-cultural factors affecting the utilisation of ante-natal care services, to ascertain the challenges affecting utilisation of ante-natal care services and suggest strategies to improve efficiency in ante-natal service delivery and utilisation of same services. Data were collected from 110 respondents using a questionnaire and through the use of the interview. Data were analysed quantitatively and qualitatively. The findings revealed that ante-natal care services are available in the study area, but access to such services is hindered by several factors, which include religious and traditional beliefs, cost of services and poor attitudes of health care workers which has an adverse effect on people’s desire to visit ante-natal centres. The study recommended that Traditional Birth Attendants (TBA) need to be trained on how to handle pregnancy-related complications. It is also recommended that essential ante-natal drugs and services should be subsidised or made free by the government, and this must be closely monitored to ensure efficiency. Finally, human relation training should be organised for nurses and midwives to improve their attitudes towards patients during ante-natal visits.

Keywords: utilisation, religion, traditional birth attendant, ante-natal

Procedia PDF Downloads 166
455 Knowledge, Attitude and Practice of Patient Referral among Patent and Proprietary Medicine Vendors in Obio-Akpor, Rivers State

Authors: Chukwunonso Igboamalu, Daprim Ogaji

Abstract:

Background: With the limited number of trained health care providers in Nigeria, patent and proprietary medicine vendors (PPMVs) are inevitable and highly needed especially in the rural areas for the supply of drugs in treating minor illnesses. These vendors serve as a crucial link between the healthcare system and the community, aiding in the distribution of medications and healthcare information, particularly in areas with limited hospital infrastructure. Objectives: The study set to measure the participants’ knowledge, attitude and patient referral practice and any association of their characteristics with patient referral. Methodology: This cross-sectional descriptive survey was conducted among PPMVs in Obio-Akpor LGA of Rivers State. Data was collected using a self-administered structured questionnaire and analysed using SPSS version 25. Results: The study showed that 18.3% had adequate knowledge, 62.4% had moderate knowledge and 19.2% had poor knowledge. Attitude was moderate among 73.4% of the study participants with only 13% showing adequate attitude. In reporting their referral practice, 34% showed poor referral practice, 58% reported moderate practice and only 8% showed adequate practice. Conclusion: Various facilitators as well as barriers to patient referral were highlighted by the respondents. This study indicated that while attitude and practice were moderate among respondents, the percentage of PPMVs with the adequate knowledge of patient referral was high. To enhance the effectiveness of patient referrals, addressing barriers to referral and promoting education and training for PPMVs are critical steps forward.

Keywords: knowledge, attitude, practice, barriers, facilitators, patent medicine vendor, referral

Procedia PDF Downloads 67
454 Tourism and Hospitality Education Efficiency Management: The Case of the Tourism Department of Sultan Qaboos University

Authors: Tamer Mohamed Atef

Abstract:

The tourism and hospitality education is a branch of the overall tourism and hospitality industry that is dedicated to providing the industry with well-educated, well-trained, skilled, enthusiastic and committed workforce. The Tourism Department at the College of Arts and Social Sciences (Sultan Qaboos University), Oman, has been providing the Omani society with undergraduate tourism and hospitality educational services since Fall 2001. Despite the fact that Tourism Department graduates are not facing any employment concerns, fluctuation in the number of enrollees and graduates, however, has been a significant characteristic since the inception of the program. To address this concern, several tactical and strategic decisions have been made, notably that the program has received accreditation from two prestigious international accreditation institutions, which mark two major milestones in the educational journey of the Tourism Department. The current study, thus, aims to provide a tourism and hospitality education efficiency management model. To achieve this aim, the following objectives were identified: to analyze students in - graduates out matrix, and to assess graduates’ employment trends. A survey was conducted to assess the current employment status of the department graduates. Secondary data were collected from Deanship of Admission and Registration statistical reports on the Tourism Department. Data were tabulated and analyzed in such a way that set forth the major findings from the survey and the secondary data. This study sheds light on the educational system created and followed by the Tourism Department, in an effort to provide a tourism and hospitality education efficiency management model, that would help educators and administrators better manage their programs.

Keywords: tourism, hospitality, education, students, graduates, employability, indicators

Procedia PDF Downloads 349