Search results for: smart phone applications
6848 An Empirical Approach to NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methane Decomposition Technique
Authors: Elnaz Akbari, Zolkafle Buntat
Abstract:
Today, the use of carbon-based materials such as graphene, carbon nanotubes, etc. in various applications is being extensively studied by researchers in the field. One of such applications is using them in gas sensors. While analytical investigations on the physical and chemical properties of carbon nanomaterials are the focal points in the studies, the need for experimental measurements on various physical characteristics of these materials is deeply felt. In this work, a set of experiments has been conducted using arc discharge Methane decomposition attempting to obtain carbonaceous materials (C-strands) formed between graphite electrodes. The current-voltage (I-V) characteristics of the fabricated C-strands have been investigated in the presence and absence of two different gases, NO2 and CO2. The results reveal that the current passing through the carbon films increases when the concentrations of gases are increased from 200 to 800 ppm. This phenomenon is a result of conductance changes and can be employed in sensing applications such as gas sensors.Keywords: carbonaceous materials, gas sensing, methane arc discharge decomposition, I-V characteristics
Procedia PDF Downloads 2166847 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications
Authors: Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper suggests a design methodology for the hardware and software of the Electronic Control Unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such that it incorporates a high performance 32-bit CPU and a separate Peripheral Control-Processor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the Hardware-in-the-Loop Simulation (HILS) for Electric Power Steering (EPS) systems which consists of the EPS mechanism, the designed ECU, and monitoring tools.Keywords: electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation
Procedia PDF Downloads 2956846 Evaluating the Effectiveness of Electronic Response Systems in Technology-Oriented Classes
Authors: Ahmad Salman
Abstract:
Electronic Response Systems such as Kahoot, Poll Everywhere, and Google Classroom are gaining a lot of popularity when surveying audiences in events, meetings, and classroom. The reason is mainly because of the ease of use and the convenience these tools bring since they provide mobile applications with a simple user interface. In this paper, we present a case study on the effectiveness of using Electronic Response Systems on student participation and learning experience in a classroom. We use a polling application for class exercises in two different technology-oriented classes. We evaluate the effectiveness of the usage of the polling applications through statistical analysis of the students performance in these two classes and compare them to the performances of students who took the same classes without using the polling application for class participation. Our results show an increase in the performances of the students who used the Electronic Response System when compared to those who did not by an average of 11%.Keywords: Interactive Learning, Classroom Technology, Electronic Response Systems, Polling Applications, Learning Evaluation
Procedia PDF Downloads 1296845 Consent, Agency and Abuse: Intimate Partner Violence in the Indian Context: A Primary Study Based on Working Women from Lower Income Groups in Smart Cities across North India
Authors: Shirin Abbas, Sandeep Kumar Dubey
Abstract:
Intimate partner violence (IPV) is one of the most common forms of gender-based violence (GBV) and is classified as discrimination on the basis of gender. Article 2 of the non-binding UN Declaration on the Elimination of Violence against Women (DEVAW). This was adopted in 1993 as the first international pronouncement regarding violence against women, including physical, sexual, and psychological violence in the family (i.e., domestic violence, marital rape, battery, statutory rape, rape by male members of the family, etc.) While crime against women continues unabated, the Indian government has strongly refuted the 2018 study by the Thomson Reuters Foundation categorizing India as a risky country for women due to the high risk of sexual violence and being forced into slave labour, according to a poll of global experts. This paper has explored consent, agency, and abuse through the lens of intimate partner violence among women from lower income groups in smart cities in the state of Uttar Pradesh, India. Using focused mapping, the paper has explored the situation on IPV internationally and studied the status of working women from lower income groups to ascertain if their lot was any different where IPV was concerned to study. The findings of the study also vindicate global reports which rate India as a country unsafe for women, even within marriage.Keywords: consent and agency, domestic violence, gender based violence GBV, intimate partner violence IPV
Procedia PDF Downloads 746844 Searching k-Nearest Neighbors to be Appropriate under Gaming Environments
Authors: Jae Moon Lee
Abstract:
In general, algorithms to find continuous k-nearest neighbors have been researched on the location based services, monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, this problem is when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. In this case, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under gaming environments.Keywords: flocking behavior, heterogeneous agents, similarity, simulation
Procedia PDF Downloads 3026843 Designing Interactive Applications for Social Anxiety Scenario Stories for Children with Autism
Authors: Wen Huei Chou, Yi-Ting Chen
Abstract:
Individuals with Autism Spectrum Disorder (ASD) often struggle with social interactions and communication. It is challenging for them to understand social cues such as facial expressions, body language, and tone of voice in social settings, leading to social conflicts and misunderstandings. Over time, feelings of frustration and anxiety can make them reluctant to engage in social situations and worsen their communication barriers. This study focused on children with autism who also experience social anxiety. Through focus group interviews with parents of children with autism and occupational therapists, it explores the reasons and scenarios behind the development of social anxiety in these children. Social scenario stories and interactive applications tailored for children with autism were designed and developed. In addition, working with the educational robots, coping strategies for various emotional situations were elaborated on, and children were helped to understand their emotions.Keywords: autism spectrum disorder, social anxiety, robot, social scenario story, interactive applications
Procedia PDF Downloads 1006842 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University
Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf
Abstract:
This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer
Procedia PDF Downloads 1316841 Study the Effect of Sensitization on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints
Authors: Viranshu Kumar, Hitesh Arora, Pradeep Joshi
Abstract:
SS 304 is Austenitic stainless steel with Chromium and Nickel as basic constituents. It has excellent corrosion resistance properties and very good weldability. Austenitic stainless steels have superior mechanical properties at high temperatures and are used extensively in a range of applications. SS 304L has wide applications in various industries viz. Nuclear, Pharmaceutical, marine, chemical etc. due to its excellent applications and ease of joining this material has become very popular for fabrication as well as weld surfacing. Austenitic stainless steels have a tendency to form chromium depleted zones at the grain boundaries during welding and heat treatment, where chromium combines with available carbon in the vicinity of the grain boundaries, to produce an area depleted in chromium, and thus becomes susceptible to intergranular corrosion. This phenomenon is known as sensitization.Keywords: sensitization, SS 304, GTAW, mechanical properties, carbideprecipitationHAZ, microstructure, micro hardness, tensile strength
Procedia PDF Downloads 3986840 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors
Authors: Lingling Shui, Shuting Xie
Abstract:
As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.Keywords: droplet, microfluidics, assembly, soft materials, microsensor
Procedia PDF Downloads 816839 Discovery of Two-dimensional Hexagonal MBene HfBO
Authors: Nanxi Miao, Junjie Wang
Abstract:
The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries
Procedia PDF Downloads 736838 Exploring Augmented Reality Applications for UNESCO World Heritage Sites in Greece: Addressing Purpose, Scenarios, Platforms, and Visitor Impact
Authors: A. Georgiou, A. Galani, A. Karatza, G. E. Bampasidis
Abstract:
Augmented Reality (AR) technology has become integral in enhancing visitor experiences at Greece's UNESCO World Heritage Sites. This research meticulously investigates various facets of AR applications/games associated with these revered sites. The cultural heritage represents the identity of each nation in the world. Technology can breathe life into this identity. Through Augmented Reality (AR), individuals can travel back in time, visit places they cannot access in real life, discover the history of these places, and live unique experiences. The study examines the objectives and intended goals behind the development and deployment of each augmented reality application/game pertaining to the UNESCO World Heritage Sites in Greece. It thoroughly analyzes the scenarios presented within these AR games/applications, examining how historical narratives, interactive elements, and cultural context are incorporated to engage users. Furthermore, the research identifies and assesses the technological platforms utilized for the development and implementation of these AR experiences, encompassing mobile devices, AR headsets, or specific software frameworks. It classifies and examines the types of augmented reality employed within these applications/games, including marker-based, markerless, location-based, or immersive AR experiences. Evaluation of the benefits accrued by visitors engaging with these AR applications/games, such as enhanced learning experiences, improved cultural understanding, and heightened engagement with the heritage sites, forms a crucial aspect of this study. Additionally, the research scrutinizes potential drawbacks or limitations associated with the AR applications/games, considering technological barriers, user accessibility issues, or constraints affecting user experience. By thoroughly investigating these pivotal aspects, this research aims to provide a comprehensive overview and analysis of the landscape of augmented reality applications/games linked to the UNESCO World Heritage Sites in Greece. The findings seek to contribute nuanced insights into the effectiveness, challenges, and opportunities associated with leveraging AR technology for heritage site preservation, visitor engagement, and cultural enrichment.Keywords: augmented reality, AR applications, UNESCO sites, cultural heritage, Greece, visitor engagement, historical narratives
Procedia PDF Downloads 646837 Path loss Signals Determination in a Selected Buildings in Kazaure
Authors: Musefiu Aderinola, F. A. Amuda
Abstract:
Outages of GSM signals may be experienced at some indoor locations even when there are strong outdoor receptions. This is often traced to the building penetration loss, which account for increased attenuation of received GSM signals level when a mobile signal device is moved indoor from outdoor. In this work, measurement of two existing GSM operators signal level were made outside and inside two selected buildings- mud and block which represent the prevalent building types in Kazaure, Jigawa State, Nigeria. A gionee P2 mobile phone with RF signal tracker software installed in it was used and the result shows that an average loss of 10.62dBm and 4.25dBm for mud and block buildings respectively.Keywords: penetration loss, outdoor reception, Gionee P2, RF signal tracker, mud and block building
Procedia PDF Downloads 3026836 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications
Authors: Wahab Ali Shah, Junjia He
Abstract:
Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency
Procedia PDF Downloads 2496835 Design and Manufacture of an Autonomous Agricultural Robot for Pesticide Application
Authors: Caner Koc, Dilara Gerdan Koc, Emrah Saka, H. Ibrahim Karagol
Abstract:
The use of pesticides in agricultural activities is the most harmful to the environment and farmers' health, and it also has the greatest input prices, along with fertilizers. In this study, an electric, electrostatically charged, autonomous agricultural robot was developed, modeled, and prototyped and manufactured. It allows for sensitive pesticide applications with variable levels, has controllable spray nozzles, and uses camera distance sensors to detect and spray into tree canopies. The created prototype was produced with flexibility in mind. Two stages of prototype manufacture were completed. The initial stage involved designing and producing the flexible primary body of the autonomous vehicle. Detachable hanger assemblies are employed so that the main body robot can perform a variety of agricultural tasks. The design of the spraying devices and their fitting to the autonomous vehicle was completed as the second stage of the prototype. The built prototype spraying robot's itinerary was planned using the free, open-source program Mission Planner. PX4, telemetry, and RTK GPS are used to maneuver the autonomous car along the designated path. To avoid potential obstructions, the robot uses ultrasonic and lidar sensors. The developed autonomous vehicle's energy needs are intended to be met entirely by electric batteries. In the event that the batteries run out of power, the sockets are set up to be recharged both by using the generator and the main power source through the specifically constructed panel.Keywords: autonomous agricultural robot, pesticide, smart farming, spraying, variable rate application
Procedia PDF Downloads 846834 Sustainable Cities: Harnessing the Power of Urban Renewable Energy
Authors: Mehrzad Soltani, Pegah Rezaei
Abstract:
In the endeavor to construct cities that are not only thriving but also environmentally responsible, effective urban planning and architectural design assume paramount significance. The focal point of this pursuit is the harnessing of urban renewable energy. By embracing sustainable practices such as the integration of solar panels into the urban landscape and the establishment of smart grids, cities are poised to confront head-on the dual challenge of surging energy demands and pressing environmental concerns. Urban renewable energy solutions offer a multifaceted approach to these issues. Firstly, they usher in a clean and sustainable source of energy, reducing the cities' ecological footprint while ensuring a continuous power supply. This transition to eco-friendly energy is also intrinsically linked to enhanced spatial utilization, thereby streamlining the efficiency of urban areas. Moreover, it spurs the adoption of sustainable transportation alternatives, diminishing the reliance on fossil fuels and mitigating air pollution. However, the significance of integrating renewable energy solutions transcends the realm of urban sustainability. It embodies a holistic approach towards creating cities that harmoniously coexist with the natural environment while catering to the needs and aspirations of their inhabitants. In essence, prioritizing sustainability in urban planning and architectural design has evolved from a choice to a necessity, one that not only safeguards the cities' well-being but also fosters a better quality of life for their residents. Thus, it is imperative that we acknowledge the transformative potential of these innovations as we pave the way towards the cities of the future.Keywords: sustainability, smart grids, solar panel, urban planning, environmental concerns
Procedia PDF Downloads 956833 D-Epi App: Mobile Application to Control Sodium Valproat Administration in Children with Idiopatic Epilepsy in Indonesia
Authors: Nyimas Annissa Mutiara Andini
Abstract:
There are 325,000 children younger than age 15 in the U.S. have epilepsy. In Indonesia, 40% of 3,5 millions cases of epilepsy happens in children. The most common type of epilepsy, which affects 6 out of 10 people with the disorder, is called idiopathic epilepsy and which has no identifiable cause. One of the most commonly used medications in the treatment of this childhood epilepsy is sodium valproate. Administration of sodium valproat in children has a problem to fail. Nearly 60% of pediatric patients known were mildly, moderately, or severely non-adherent with therapy during the first six months of treatment. Many parents or caregiver took far less medication than prescribed, and the treatment-adherence pattern for the majority of patients was established during the first month of treatment. 42% of the patients were almost always given their medications as prescribed but 13% had very poor adherence even in the early weeks and months of treatment. About 7% of patients initially gave the medication correctly 90% of the time, but adherence dropped to around 20% within six months of starting treatment. Over the six months of observation, the total missing of administration is about four out of 14 doses in any given week. This fail can cause the epilepsy to relapse. Whereas, current reported epilepsy disorder were significantly more likely than those never diagnosed to experience depression (8% vs 2%), anxiety (17% vs 3%), attention-deficit/hyperactivity disorder (23% vs 6%), developmental delay (51% vs 3%), autism/autism spectrum disorder (16% vs 1%), and headaches (14% vs 5%) (all P< 0.05). They had a greater risk of limitation in the ability to do things (relative risk: 9.22; 95% CI: 7.56–11.24), repeating a school grade (relative risk: 2.59; CI: 1.52–4.40), and potentially having unmet medical and mental health needs. In the other side, technology can help to make our life easier. One of the technology, that we can use is a mobile application. A mobile app is a software program we can download and access directly using our phone. Indonesians are highly mobile centric. They use, on average, 6.7 applications over a 30 day period. This paper is aimed to describe an application that could help to control a sodium valproat administration in children; we call it as D-Epi app. D-Epi app is a downloadable application that can help parents or caregiver alert by a timer-related application to warn whether it is the time to administer the sodium valproat. It works not only as a standard alarm, but also inform important information about the drug and emergency stuffs to do to children with epilepsy. This application could help parents and caregiver to take care a child with epilepsy in Indonesia.Keywords: application, children, D-Epi, epilepsy
Procedia PDF Downloads 2806832 Efficient Subsurface Mapping: Automatic Integration of Ground Penetrating Radar with Geographic Information Systems
Authors: Rauf R. Hussein, Devon M. Ramey
Abstract:
Integrating Ground Penetrating Radar (GPR) with Geographic Information Systems (GIS) can provide valuable insights for various applications, such as archaeology, transportation, and utility locating. Although there has been progress toward automating the integration of GPR data with GIS, fully automatic integration has not been achieved yet. Additionally, manually integrating GPR data with GIS can be a time-consuming and error-prone process. In this study, actual, real-world GPR applications are presented, and a software named GPR-GIS 10 is created to interactively extract subsurface targets from GPR radargrams and automatically integrate them into GIS. With this software, it is possible to quickly and reliably integrate the two techniques to create informative subsurface maps. The results indicated that automatic integration of GPR with GIS can be an efficient tool to map and view any subsurface targets in their appropriate location in a 3D space with the needed precision. The findings of this study could help GPR-GIS integrators save time and reduce errors in many GPR-GIS applications.Keywords: GPR, GIS, GPR-GIS 10, drone technology, automation
Procedia PDF Downloads 926831 Mobile Traffic Management in Congested Cells using Fuzzy Logic
Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh
Abstract:
To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells
Procedia PDF Downloads 1206830 Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach
Authors: Mogale T. E., Ayisi K. K., Munjonji L., Kifle Y. G.
Abstract:
Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province.Keywords: cowpea, climate-smart, grain sorghum, intercropping
Procedia PDF Downloads 2226829 Secure Intelligent Information Management by Using a Framework of Virtual Phones-On Cloud Computation
Authors: Mohammad Hadi Khorashadi Zadeh
Abstract:
Many new applications and internet services have been emerged since the innovation of mobile networks and devices. However, these applications have problems of security, management, and performance in business environments. Cloud systems provide information transfer, management facilities, and security for virtual environments. Therefore, an innovative internet service and a business model are proposed in the present study for creating a secure and consolidated environment for managing the mobile information of organizations based on cloud virtual phones (CVP) infrastructures. Using this method, users can run Android and web applications in the cloud which enhance performance by connecting to other CVP users and increases privacy. It is possible to combine the CVP with distributed protocols and central control which mimics the behavior of human societies. This mix helps in dealing with sensitive data in mobile devices and facilitates data management with less application overhead.Keywords: BYOD, mobile cloud computing, mobile security, information management
Procedia PDF Downloads 3176828 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 506827 Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators
Authors: Yana Xiao
Abstract:
The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible.Keywords: triboelectric nanogenerator, energy harvest, liquid tribomaterial, structure innovation
Procedia PDF Downloads 906826 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network
Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert
Abstract:
The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy
Procedia PDF Downloads 1356825 3D Medical Printing the Key Component in Future of Medical Applications
Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt
Abstract:
There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants
Procedia PDF Downloads 2986824 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 2526823 myITLab as an Implementation Instance of Distance Education Technologies
Authors: Leila Goosen
Abstract:
The research problem reported on in this paper relates to improving success in Computer Science and Information Technology subjects where students are learning applications, especially when teaching occurs in a distance education context. An investigation was launched in order to address students’ struggles with applications, and improve their assessment in such subjects. Some of the main arguments presented centre on formulating and situating significant concepts within an appropriate conceptual framework. The paper explores the experiences and perceptions of computing instructors, teaching assistants, students and higher education institutions on how they are empowered by using technologies such as myITLab. They also share how they are working with the available features to successfully teach applications to their students. The data collection methodology used is then described. The paper includes discussions on how myITLab empowers instructors, teaching assistants, students and higher education institutions. Conclusions are presented on the way in which this paper could make an original and significant contribution to the promotion and development of knowledge in fields related to successfully teaching applications for student learning, including in a distance education context. The paper thus provides a forum for practitioners to highlight and discuss insights and successes, as well as identify new technical and organisational challenges, lessons and concerns regarding practical activities related to myITLab as an implementation instance of distance education technologies.Keywords: distance, education, myITLab, technologies
Procedia PDF Downloads 3596822 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications
Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.
Abstract:
This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant
Procedia PDF Downloads 536821 A User Study on the Adoption of Context-Aware Destination Mobile Applications
Authors: Shu-Lu Hsu, Fang-Yi Chu
Abstract:
With the advances in information and communications technology, mobile context-aware applications have become powerful marketing tools. In Apple online store, there are numerous mobile applications (APPs) developed for destination tour. This study investigated the determinants of adoption of context-aware APPs for destination tour services. A model is proposed based on Technology Acceptance Model and privacy concern theory. The model was empirically tested based on a sample of 259 users of a tourism APP published by Kaohsiung Tourism Bureau, Taiwan. The results showed that the fitness of the model is well and, among all the factors, the perceived usefulness and perceived ease of use have the most significant influences on the intention to adopt context-aware destination APPs. Finally, contrary to the findings of previous literature, the effect of privacy concern on the adoption intention of context-aware APP is insignificant.Keywords: mobile application, context-aware, privacy concern, TAM
Procedia PDF Downloads 2586820 A Study on Abnormal Behavior Detection in BYOD Environment
Authors: Dongwan Kang, Joohyung Oh, Chaetae Im
Abstract:
Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors such as information leaks which use the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection and discusses applications of this method in BYOD environment.Keywords: BYOD, security, anomaly behavior detection, security equipment, communication technologies
Procedia PDF Downloads 3246819 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars
Authors: Zeki Kara, Kevser Yazar
Abstract:
Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.
Procedia PDF Downloads 169