Search results for: semantic data
24556 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 49724555 Cognitive and Behavioral Disorders in Patients with Precuneal Infarcts
Authors: F. Ece Cetin, H. Nezih Ozdemir, Emre Kumral
Abstract:
Ischemic stroke of the precuneal cortex (PC) alone is extremely rare. This study aims to evaluate the clinical, neurocognitive, and behavioural characteristics of isolated PC infarcts. We assessed neuropsychological and behavioral findings in 12 patients with isolated PC infarct among 3800 patients with ischemic stroke. To determine the most frequently affected brain locus in patients, we first overlapped the ischemic area of patients with specific cognitive disorders and patients without specific cognitive disorders. Secondly, we compared both overlap maps using the 'subtraction plot' function of MRIcroGL. Patients showed various types of cognitive disorders. All patients experienced more than one category of cognitive disorder, except for two patients with only one cognitive disorder. Lesion topographical analysis showed that damage within the anterior precuneal region might lead to consciousness disorders (25%), self-processing impairment (42%), visuospatial disorders (58%), and lesions in the posterior precuneal region caused episodic and semantic memory impairment (33%). The whole precuneus is involved in at least one body awareness disorder. The cause of the stroke was cardioembolism in 5 patients (42%), large artery disease in 3 (25%), and unknown in 4 (33%). This study showed a wide variety of neuropsychological and behavioural disorders in patients with precuneal infarct. Future studies are needed to achieve a proper definition of the function of the precuneus in relation to the extended cortical areas. Precuneal cortex region infarcts have been found to predict a source of embolism from the large arteries or heart.Keywords: cognition, pericallosal artery, precuneal cortex, ischemic stroke
Procedia PDF Downloads 13024554 Status and Results from EXO-200
Authors: Ryan Maclellan
Abstract:
EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.Keywords: double-beta, Majorana, neutrino, neutrinoless
Procedia PDF Downloads 41424553 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 43624552 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 37424551 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 9824550 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 24724549 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 4424548 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 41824547 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 13824546 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks
Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode
Abstract:
The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control
Procedia PDF Downloads 8424545 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index
Authors: A. Sathiya Susuman, Hamisi F. Hamisi
Abstract:
Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index
Procedia PDF Downloads 47624544 A Study of Bilingual Development of a Mandarin and English Bilingual Preschool Child from China to Australia
Abstract:
This project aims to trace the developmental patterns of a child's Mandarin and English from China to Australia from age 3; 03 till 5; 06. In childhood bilingual studies, there is an assumption that age 3 is the dividing line between simultaneous bilinguals and sequential bilinguals. Determining similarities and differences between Bilingual First Language Acquisition, Early Second Language Acquisition, and Second Language Acquisition is of great theoretical significance. Studies on Bilingual First Language Acquisition, hereafter, BFLA in the past three decades have shown that the grammatical development of bilingual children progresses through the same developmental trajectories as their monolingual counterparts. Cross-linguistic interaction does not show changes of the basic grammatical knowledge, even in the weaker language. While BFLA studies show consistent results under the conditions of adequate input and meaningful interactional context, the research findings of Early Second Language Acquisition (ESLA) have demonstrated that this cohort proceeds their early English differently from both BFLA and SLA. The different development could be attributed to the age of migration, input pattern, and their Environmental Languages (Lε). In the meantime, the dynamic relationship between the two languages is an issue to invite further attention. The present study attempts to fill this gap. The child in this case study started acquiring L1 Mandarin from birth in China, where the environmental language (Lε) coincided with L1 Mandarin. When she migrated to Australia at 3;06, where the environmental language (Lε) was L2 English, her Mandarin exposure was reduced. On the other hand, she received limited English input starting from 1; 02 in China, where the environmental language (Lε) was L1 Mandarin, a non-English environment. When she relocated to Australia at 3; 06, where the environmental language (Lε) coincided with L2 English, her English exposure significantly increased. The child’s linguistic profile provides an opportunity to explore: (1) What does the child’s English developmental route look like? (2) What does the L1 Mandarin developmental pattern look like in different environmental languages? (3) How do input and environmental language interact in shaping the bilingual child’s linguistic repertoire? In order to answer these questions, two linguistic areas are selected as the focus of the investigation, namely, subject realization and wh-questions. The chosen areas are contrastive in structure but perform the same semantic functions in the two linguistically distant languages and can serve as an ideal testing ground for exploring the developmental path in the two languages. The longitudinal case study adopts a combined approach of qualitative and quantitative analysis. Two years’ Mandarin and English data are examined, and comparisons are made with age-matched monolinguals in each language in CHILDES. To the author’s best knowledge, this study is the first of this kind examining a Mandarin-English bilingual child's bilingual development at a critical age, in different input patterns, and in different environmental languages (Lε). It also expands the scope of the theory of Lε, adding empirical evidence on the relationship between input and Lε in bilingual acquisition.Keywords: bilingual development, age, input, environmental language (Le)
Procedia PDF Downloads 15024543 Progress in Combining Image Captioning and Visual Question Answering Tasks
Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima
Abstract:
Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.Keywords: image captioning, visual question answering, deep learning, natural language processing
Procedia PDF Downloads 7324542 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 42824541 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 6624540 Coping with Incompatible Identities in Russia: Case of Orthodox Gays
Authors: Siuzan Uorner
Abstract:
The era of late modernity is characterized, on the one hand, by social disintegration, values of personal freedom, tolerance, and self-expression. Boundaries between the accessible and the elitist, normal and abnormal are blurring. On the other hand, traditional social institutions, such as religion (especially Russian Orthodox Church), exist, criticizing lifestyle and worldview other than conventionally structured canons. Despite the declared values and opportunities in late modern society, people's freedom is ambivalent. Personal identity and its aspects are becoming a subject of choice. Hence, combinations of identity aspects can be incompatible. Our theoretical framework is based on P. Ricoeur's concept of narrative identity and hermeneutics, E. Goffman’s theory of social stigma, self-presentation, discrepant roles and W. James lectures about varieties of religious experience. This paper aims to reconstruct ways of coping with incompatible identities of Orthodox gays (an extreme sampling of a combination of sexual orientation and religious identity in a heteronormative society). This study focuses on the discourse of Orthodox gay parishioners and ROC gay priests in Russia (sampling ‘hard to reach’ populations because of the secrecy of gay community in ROC and sensitivity of the topic itself). We conducted a qualitative research design, using in-depth personal semi-structured online-interviews. Recruiting of informants took place in 'Nuntiare et Recreare' (Russian movement of religious LGBT) page in VKontakte through the post with an invitation to participate in the research. In this work, we analyzed interview transcripts using axial coding. We chose the Grounded Theory methodology to construct a theory from empirical data and contribute to the growing body of knowledge in ways of harmonizing incompatible identities in late modern societies. The research has found that there are two types of conflicts Orthodox gays meet with: canonic contradictions (postulates of Scripture and its interpretations) and problems in social interaction, mainly with ROC priests and Orthodox parishioners. We have revealed semantic meanings of most commonly used words that appear in the narratives (words such as ‘love’, ‘sin’, ‘religion’ etc.). Finally, we have reconstructed biographical patterns of LGBT social movements’ involvement. This paper argues that all incompatibilities are harmonizing in the narrative itself. As Ricoeur has suggested, the narrative configuration allows the speaker to gather facts and events together and to compose causal relationships between them. Sexual orientation and religious identity are getting along and harmonizing in the narrative.Keywords: gay priests, incompatible identities, narrative identity, Orthodox gays, religious identity, ROC, sexual orientation
Procedia PDF Downloads 13724539 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry
Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak
Abstract:
Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.Keywords: supply chain performance, performance measurement, data mining, automotive
Procedia PDF Downloads 51324538 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 11224537 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic
Procedia PDF Downloads 33524536 Existential and Possessive Constructions in Modern Standard Arabic Two Strategies Reflecting the Ontological (Non-)Autonomy of Located or Possessed Entities
Authors: Fayssal Tayalati
Abstract:
Although languages use very divergent constructional strategies, all existential constructions appear to invariably involve an implicit or explicit locative constituent. This locative constituent either surface as a true locative phrase or are realized as a possessor noun phrase. However, while much research focuses on the supposed underlying syntactic relation of locative and possessive existential constructions, not much is known about possible semantic factors that could govern the choice between these constructions. The main question that we address in this talk concerns the choice between the two related constructions in Modern Standard Arabic (MAS). Although both are used to express the existence of something somewhere, we can distinguish three contexts: First, for some types of entities, only the EL construction is possible (e.g. (1a) ṯammata raǧulun fī l-ḥadīqati vs. (1b) *(kāna) ladā l-ḥadīqati raǧulun). Second, for other types of entities, only the possessive construction is possible (e.g. (2a) ladā ṭ-ṭawilati aklun dāʾiriyyun vs. (2b) *ṯammata šaklun dāʾiriyyun ladā/fī ṭ-ṭawilati). Finally, for still other entities, both constructions can be found (e.g. (3a) ṯammata ḥubbun lā yūṣafu ladā ǧārī li-zawǧati-hi and (3b) ladā ǧārī ḥubbun lā yūṣafu li-zawǧati-hi). The data covering a range of ontologically different entities (concrete objects, events, body parts, dimensions, essential qualities, feelings, etc.) shows that the choice between the existential locative and the possessive constructions is closely linked to the conceptual autonomy of the existential theme with respect to its location or to the whole that it is a part of. The construction with ṯammata is the only possible one to express the existence of a fully autonomous (i.e. nondependent) entity (concrete objects (e.g.1) and abstract objects such as events, especially the ones that Grimshaw called ‘simple events’). The possessive construction with (kāna) ladā is the only one used to express the existence of fully non-autonomous (i.e. fully dependent on a whole) entities (body parts, dimensions (e.g. 2), essential qualities). The two constructions alternate when the existential theme is conceptually dependent but separable of the whole, either because it has an autonomous (independent) existence of the given whole (spare parts of an object), or because it receives a relative autonomy in the speech through a modifier (accidental qualities, feelings (e.g. 3a, 3b), psychological states, among some other kinds of themes). In this case, the modifier expresses an approximate boundary on a scale, and provides relative autonomy to the entity. Finally, we will show that kinship terms (e.g. son), which at first sight may seem to constitute counterexamples to our hypothesis, are nonetheless supported by it. The ontological (non-)autonomy of located or possessed entities is also reflected by morpho-syntactic properties, among them the use and the choice of determiners, pluralisation and the behavior of entities in the context of associative anaphora.Keywords: existence, possession, autonomous entities, non-autonomous entities
Procedia PDF Downloads 35024535 The Study of Dengue Fever Outbreak in Thailand Using Geospatial Techniques, Satellite Remote Sensing Data and Big Data
Authors: Tanapat Chongkamunkong
Abstract:
The objective of this paper is to present a practical use of Geographic Information System (GIS) to the public health from spatial correlation between multiple factors and dengue fever outbreak. Meteorological factors, demographic factors and environmental factors are compiled using GIS techniques along with the Global Satellite Mapping Remote Sensing (RS) data. We use monthly dengue fever cases, population density, precipitation, Digital Elevation Model (DEM) data. The scope cover study area under climate change of the El Niño–Southern Oscillation (ENSO) indicated by sea surface temperature (SST) and study area in 12 provinces of Thailand as remote sensing (RS) data from January 2007 to December 2014.Keywords: dengue fever, sea surface temperature, Geographic Information System (GIS), remote sensing
Procedia PDF Downloads 19824534 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 20824533 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function
Authors: Pan Hongxia, Wang Zhenhua
Abstract:
In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.Keywords: gearbox, fault diagnosis, ar model, end effect
Procedia PDF Downloads 36624532 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act
Authors: Maria Jędrzejczak, Patryk Pieniążek
Abstract:
The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.Keywords: data protection law, personal data, AI law, personal data breach
Procedia PDF Downloads 6524531 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking
Authors: Handie Pramana Putra, Ani Dijah Rahajoe
Abstract:
The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.Keywords: database, data analysis, DPNE, extended data flow, e-commerce
Procedia PDF Downloads 5624530 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making
Authors: Amal Mohammed Alqahatni
Abstract:
This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.Keywords: digital leadership, big data, leadership style, digital leadership challenge
Procedia PDF Downloads 6924529 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 46024528 Accurate HLA Typing at High-Digit Resolution from NGS Data
Authors: Yazhi Huang, Jing Yang, Dingge Ying, Yan Zhang, Vorasuk Shotelersuk, Nattiya Hirankarn, Pak Chung Sham, Yu Lung Lau, Wanling Yang
Abstract:
Human leukocyte antigen (HLA) typing from next generation sequencing (NGS) data has the potential for applications in clinical laboratories and population genetic studies. Here we introduce a novel technique for HLA typing from NGS data based on read-mapping using a comprehensive reference panel containing all known HLA alleles and de novo assembly of the gene-specific short reads. An accurate HLA typing at high-digit resolution was achieved when it was tested on publicly available NGS data, outperforming other newly-developed tools such as HLAminer and PHLAT.Keywords: human leukocyte antigens, next generation sequencing, whole exome sequencing, HLA typing
Procedia PDF Downloads 66424527 Early Childhood Education: Teachers Ability to Assess
Authors: Ade Dwi Utami
Abstract:
Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.Keywords: assessment, early childhood education, pedagogic competence, teachers
Procedia PDF Downloads 246