Search results for: reliability modeling
4839 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 1344838 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity
Authors: Vahid Ebrahimipour
Abstract:
Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation
Procedia PDF Downloads 1054837 Knowledge Creation Environment in the Iranian Universities: A Case Study
Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi
Abstract:
Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities
Procedia PDF Downloads 1014836 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard
Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk
Abstract:
In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify
Procedia PDF Downloads 4844835 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation
Authors: A. Naamane, M. Hasnaoui
Abstract:
Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel
Procedia PDF Downloads 1344834 Building Information Modeling and Its Application in the State of Kuwait
Authors: Michael Gerges, Ograbe Ahiakwo, Martin Jaeger, Ahmad Asaad
Abstract:
Recent advances of Building Information Modeling (BIM) especially in the Middle East have increased remarkably. Dubai has been taking a lead on this by making it mandatory for BIM to be adopted for all projects that involve complex architecture designs. This is because BIM is a dynamic process that assists all stakeholders in monitoring the project status throughout different project phases with great transparency. It focuses on utilizing information technology to improve collaboration among project participants during the entire life cycle of the project from the initial design, to the supply chain, resource allocation, construction and all productivity requirements. In view of this trend, the paper examines the extent of applying BIM in the State of Kuwait, by exploring practitioners’ perspectives on BIM, especially their perspectives on main barriers and main advantages. To this end structured interviews were carried out based on questionnaires and with a range of different construction professionals. The results revealed that practitioners perceive improved communication and mitigated project risks by encouraged collaboration between project participants. However, it was also observed that the full implementation of BIM in the State of Kuwait requires concerted efforts to make clients demanding BIM, counteract resistance to change among construction professionals and offer more training for design team members. This paper forms part of an on-going research effort on BIM and its application in the State of Kuwait and it is on this basis that further research on the topic is proposed.Keywords: building information modeling, BIM, construction industry, Kuwait
Procedia PDF Downloads 3784833 Surge in U. S. Citizens Expatriation: Testing Structual Equation Modeling to Explain the Underlying Policy Rational
Authors: Marco Sewald
Abstract:
Comparing present to past the numbers of Americans expatriating U. S. citizenship have risen. Even though these numbers are small compared to the immigrants, U. S. citizens expatriations have historically been much lower, making the uptick worrisome. In addition, the published lists and numbers from the U.S. government seems incomplete, with many not counted. Different branches of the U. S. government report different numbers and no one seems to know exactly how big the real number is, even though the IRS and the FBI both track and/or publish numbers of Americans who renounce. Since there is no single explanation, anecdotal evidence suggests this uptick is caused by global tax law and increased compliance burdens imposed by the U.S. lawmakers on U.S. citizens abroad. Within a research project the question arose about the reasons why a constant growing number of U.S. citizens are expatriating – the answers are believed helping to explain the underlying governmental policy rational, leading to such activities. While it is impossible to locate former U.S. citizens to conduct a survey on the reasons and the U.S. government is not commenting on the reasons given within the process of expatriation, the chosen methodology is Structural Equation Modeling (SEM), in the first step by re-using current surveys conducted by different researchers within the population of U. S. citizens residing abroad during the last years. Surveys questioning the personal situation in the context of tax, compliance, citizenship and likelihood to repatriate to the U. S. In general SEM allows: (1) Representing, estimating and validating a theoretical model with linear (unidirectional or not) relationships. (2) Modeling causal relationships between multiple predictors (exogenous) and multiple dependent variables (endogenous). (3) Including unobservable latent variables. (4) Modeling measurement error: the degree to which observable variables describe latent variables. Moreover SEM seems very appealing since the results can be represented either by matrix equations or graphically. Results: the observed variables (items) of the construct are caused by various latent variables. The given surveys delivered a high correlation and it is therefore impossible to identify the distinct effect of each indicator on the latent variable – which was one desired result. Since every SEM comprises two parts: (1) measurement model (outer model) and (2) structural model (inner model), it seems necessary to extend the given data by conducting additional research and surveys to validate the outer model to gain the desired results.Keywords: expatriation of U. S. citizens, SEM, structural equation modeling, validating
Procedia PDF Downloads 2214832 Counselling Needs of Psychiatric Patients as Perceived by Their Medical Personnel, in Federal Neuropsychiatric Hospital, Aro, Abeokuta
Authors: F. N. Bolu-Steve, T. A. Ajiboye
Abstract:
A study was carried out on the awareness of counselling needs of psychiatric patients as perceived by medical personnel in the Federal Neuropsychiatric hospital, Aro, Abeokuta, Nigeria. The respondents comprised of medical personnel of the Neuropsychiatric hospital in Aro. Purposive sampling technique was used to select the respondents. The target population of the study consisted of all medical doctors treating the psychiatric patients. A total of 200 respondents participated in the study out of which 143 were males and 57 of them were females. With their years of experience as a medical doctors, 49.5% of them have worked between 1-5 years, 30.5% of the respondents have 6-10 years’ experience while those with 16 years and above experience are 7.0%. The major counselling need of psychiatric patients as expressed by medical doctors is the need to have information about the right balance diet. The data were analyzed using percentages, mean, frequency, Analysis of Variance (ANOVA) and t-test statistical tools. The instrument used for data collection was the structured questionnaire titled “Counselling Needs of Psychiatric Patients Questionnaire” (CNPPQ). This instrument was drafted by the researchers through the review of related literature. The reliability of the instrument was established using test-retest method. A reliability index of 0.74 was obtained. Three of the hypotheses were rejected while two of them were accepted at 0.05 alpha level of significance. Based on the findings of the study, it was recommended that broad based counselling services should be provided to psychiatric patients in order to assist them to develop positive self- image and to cope with their challenges.Keywords: counselling, needs, psychiatric, medical personnel, patients
Procedia PDF Downloads 4224831 Low Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors
Procedia PDF Downloads 4424830 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
Authors: Aymen Laadhari
Abstract:
We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.Keywords: finite element method, level set, Newton, membrane
Procedia PDF Downloads 3304829 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis
Authors: Hyun-Woo Cho
Abstract:
Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques
Procedia PDF Downloads 3874828 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 1994827 The Importance of Knowledge Innovation for External Audit on Anti-Corruption
Authors: Adel M. Qatawneh
Abstract:
This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange
Procedia PDF Downloads 4654826 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 2024825 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 104824 The Importance of SEEQ in Teaching Evaluation of Undergraduate Engineering Education in India
Authors: Aabha Chaubey, Bani Bhattacharya
Abstract:
Evaluation of the quality of teaching in engineering education in India needs to be conducted on a continuous basis to achieve the best teaching quality in technical education. Quality teaching is an influential factor in technical education which impacts largely on learning outcomes of the students. Present study is not exclusively theory-driven, but it draws on various specific concepts and constructs in the domain of technical education. These include teaching and learning in higher education, teacher effectiveness, and teacher evaluation and performance management in higher education. Student Evaluation of Education Quality (SEEQ) was proposed as one of the evaluation instruments of the quality teaching in engineering education. SEEQ is one of the popular and standard instrument widely utilized all over the world and bears the validity and reliability in educational world. The present study was designed to evaluate the teaching quality through SEEQ in the context of technical education in India, including its validity and reliability based on the collected data. The multiple dimensionality of SEEQ that is present in every teaching and learning process made it quite suitable to collect the feedback of students regarding the quality of instructions and instructor. The SEEQ comprises of 9 original constructs i.e.; learning value, teacher enthusiasm, organization, group interaction, and individual rapport, breadth of coverage, assessment, assignments and overall rating of particular course and instructor with total of 33 items. In the present study, a total of 350 samples comprising first year undergraduate students from Indian Institute of Technology, Kharagpur (IIT, Kharagpur, India) were included for the evaluation of the importance of SEEQ. They belonged to four different courses of different streams of engineering studies. The above studies depicted the validity and reliability of SEEQ was based upon the collected data. This further needs Confirmatory Factor Analysis (CFA) and Analysis of Moment structure (AMOS) for various scaled instrument like SEEQ Cronbach’s alpha which are associated with SPSS for the examination of the internal consistency. The evaluation of the effectiveness of SEEQ in CFA is implemented on the basis of fit indices such as CMIN/df, CFI, GFI, AGFI and RMSEA readings. The major findings of this study showed the fitness indices such as ChiSq = 993.664,df = 390,ChiSq/df = 2.548,GFI = 0.782,AGFI = 0.736,CFI = 0.848,RMSEA = 0.062,TLI = 0.945,RMR = 0.029,PCLOSE = 0.006. The final analysis of the fit indices presented positive construct validity and stability, on the other hand a higher reliability was also depicted which indicated towards internal consistency. Thus, the study suggests the effectivity of SEEQ as the indicator of the quality evaluation instrument in teaching-learning process in engineering education in India. Therefore, it is expected that with the continuation of this research in engineering education there remains a possibility towards the betterment of the quality of the technical education in India. It is also expected that this study will provide an empirical and theoretical logic towards locating a construct or factor related to teaching, which has the greatest impact on teaching and learning process in a particular course or stream in engineering education.Keywords: confirmatory factor analysis, engineering education, SEEQ, teaching and learning process
Procedia PDF Downloads 4214823 Using Building Information Modeling in Green Building Design and Performance Optimization
Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad
Abstract:
Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design
Procedia PDF Downloads 3434822 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach
Authors: Nada Souissi, Mourad Mroua
Abstract:
The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning
Procedia PDF Downloads 1494821 Conceptual Modeling of the Relationship between Project Management Practices and Knowledge Absorptive Capacity Using Interpretive Structural Modeling Method
Authors: Seyed Abdolreza Mosavi, Alireza Babakhan, Elham Sadat Hoseinifard
Abstract:
Knowledge-based firms need to design mechanisms for continuous absorptive and creation of knowledge in order to ensure their survival in the competitive arena and to follow the path of development. Considering the project-oriented nature of product development activities in knowledge-based firms on the one hand and the importance of analyzing the factors affecting knowledge absorptive capacity in these firms on the other, the purpose of this study is to identify and classify the factors affecting project management practices on absorptive knowledge capacity. For this purpose, we have studied and reviewed the theoretical literature in the field of project management and absorptive knowledge capacity so as to clarify its dimensions and indexes. Then, using the ISM method, the relationship between them has been studied. To collect data, 21 questionnaires were distributed in project-oriented knowledge-based companies. The results of the ISM method analysis provide a model for the relationship between project management activities and knowledge absorptive capacity, which includes knowledge acquisition capacity, scope management, time management, cost management, quality management, human resource management, communications management, procurement management, risk management, stakeholders management and integration management. Having conducted the MICMAC analysis, we divided the variables into three groups of independent, relational and dependent variables and came up with no variables to be included in the group of autonomous variables.Keywords: knowledge absorptive capacity, project management practices, knowledge-based firms, interpretive structural modeling
Procedia PDF Downloads 1974820 Increasing Self-Efficacy of Secondary School Students in Physics Using Mentoring Enhanced Strategy
Authors: Gabriel Odeh Ankeli
Abstract:
The study determined how mentoring enhanced strategy can increase self-efficacy of secondary school students in physics in education zone C of Benue State, Nigeria. The study was guided by two research questions while two hypotheses were formulated and tested at 0.05 level of significance. The design of the study was the quasi-experimental, non-randomized, pre-test and post-test control groups. The population of the study consisted of 4,064 SS two physics students in the 94 schools in Education Zone C. The sample comprised 406 SS two physics students drawn from 10 schools using multi-stage sampling technique. The research instrument adapted and used for data collection was Students Self-Efficacy Scale (SSES). The research instrument was subjected to a reliability analysis using Cronbachs Alpha which yielded a reliability co-efficient of 0.84. Data collected were analyzed using discriptive statistics of mean and standard deviation to answer the research questions while inferential statistics of Analysis of Covariance (ANCOVA) was used to test the hypotheses. The findings revealed that students who were exposed to mentoring exhibited lower self-efficacy levels (F 1,405 = 2.751, P = 0.09˃0.05) than those students who were not exposed to mentoring. There was significant difference between male and female students’ self-efficacy level (F 1,211 = 5.496, P = 0.02˂0.05). Based on these findings, it was recommended among others that longer duration of mentoring period should be encouraged when using the mentoring strategy for better enhancement of Self-efficacy of students.Keywords: physics, self-efficacy, mentoring enhanced strategy, students
Procedia PDF Downloads 304819 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages
Authors: Y. Galerkin, A. Rekstin, K. Soldatova
Abstract:
Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser
Procedia PDF Downloads 4674818 Development on the Modeling Driven Architecture
Authors: Sahar Shahsavaripour Ghazanfarpour
Abstract:
As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation
Procedia PDF Downloads 4954817 Design and Modeling of a Green Building Energy Efficient System
Authors: Berhane Gebreslassie
Abstract:
Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy
Procedia PDF Downloads 2754816 Review of the Model-Based Supply Chain Management Research in the Construction Industry
Authors: Aspasia Koutsokosta, Stefanos Katsavounis
Abstract:
This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.Keywords: construction supply chain management, modeling, operations research, optimization, simulation
Procedia PDF Downloads 5034815 Quality Service Standard of Food and Beverage Service Staff in Hotel
Authors: Thanasit Suksutdhi
Abstract:
This survey research aims to study the standard of service quality of food and beverage service staffs in hotel business by studying the service standard of three sample hotels, Siam Kempinski Hotel Bangkok, Four Seasons Resort Chiang Mai, and Banyan Tree Phuket. In order to find the international service standard of food and beverage service, triangular research, i.e. quantitative, qualitative, and survey were employed. In this research, questionnaires and in-depth interview were used for getting the information on the sequences and method of services. There were three parts of modified questionnaires to measure service quality and guest’s satisfaction including service facilities, attentiveness, responsibility, reliability, and circumspection. This study used sample random sampling to derive subjects with the return rate of the questionnaires was 70% or 280. Data were analyzed by SPSS to find arithmetic mean, SD, percentage, and comparison by t-test and One-way ANOVA. The results revealed that the service quality of the three hotels were in the international level which could create high satisfaction to the international customers. Recommendations for research implementations were to maintain the area of good service quality, and to improve some dimensions of service quality such as reliability. Training in service standard, product knowledge, and new technology for employees should be provided. Furthermore, in order to develop the service quality of the industry, training collaboration between hotel organization and educational institutions in food and beverage service should be considered.Keywords: service standard, food and beverage department, sequence of service, service method
Procedia PDF Downloads 3524814 Screening Tools and Its Accuracy for Common Soccer Injuries: A Systematic Review
Authors: R. Christopher, C. Brandt, N. Damons
Abstract:
Background: The sequence of prevention model states that by constant assessment of injury, injury mechanisms and risk factors are identified, highlighting that collecting and recording of data is a core approach for preventing injuries. Several screening tools are available for use in the clinical setting. These screening techniques only recently received research attention, hence there is a dearth of inconsistent and controversial data regarding their applicability, validity, and reliability. Several systematic reviews related to common soccer injuries have been conducted; however, none of them addressed the screening tools for common soccer injuries. Objectives: The purpose of this study was to conduct a review of screening tools and their accuracy for common injuries in soccer. Methods: A systematic scoping review was performed based on the Joanna Briggs Institute procedure for conducting systematic reviews. Databases such as SPORT Discus, Cinahl, Medline, Science Direct, PubMed, and grey literature were used to access suitable studies. Some of the key search terms included: injury screening, screening, screening tool accuracy, injury prevalence, injury prediction, accuracy, validity, specificity, reliability, sensitivity. All types of English studies dating back to the year 2000 were included. Two blind independent reviewers selected and appraised articles on a 9-point scale for inclusion as well as for the risk of bias with the ACROBAT-NRSI tool. Data were extracted and summarized in tables. Plot data analysis was done, and sensitivity and specificity were analyzed with their respective 95% confidence intervals. I² statistic was used to determine the proportion of variation across studies. Results: The initial search yielded 95 studies, of which 21 were duplicates, and 54 excluded. A total of 10 observational studies were included for the analysis: 3 studies were analysed quantitatively while the remaining 7 were analysed qualitatively. Seven studies were graded low and three studies high risk of bias. Only high methodological studies (score > 9) were included for analysis. The pooled studies investigated tools such as the Functional Movement Screening (FMS™), the Landing Error Scoring System (LESS), the Tuck Jump Assessment, the Soccer Injury Movement Screening (SIMS), and the conventional hamstrings to quadriceps ratio. The accuracy of screening tools was of high reliability, sensitivity and specificity (calculated as ICC 0.68, 95% CI: 52-0.84; and 0.64, 95% CI: 0.61-0.66 respectively; I² = 13.2%, P=0.316). Conclusion: Based on the pooled results from the included studies, the FMS™ has a good inter-rater and intra-rater reliability. FMS™ is a screening tool capable of screening for common soccer injuries, and individual FMS™ scores are a better determinant of performance in comparison with the overall FMS™ score. Although meta-analysis could not be done for all the included screening tools, qualitative analysis also indicated good sensitivity and specificity of the individual tools. Higher levels of evidence are, however, needed for implication in evidence-based practice.Keywords: accuracy, screening tools, sensitivity, soccer injuries, specificity
Procedia PDF Downloads 1794813 Modeling and Performance Analysis of an Air-Cooled Absorption Chiller
Abstract:
Due to the high cost and the environmental problems caused by the conventional air-conditioning systems, various researches are being increasingly focused on thermal comfort in the building sector integrating renewable energy sources, particularly solar energy. For that purpose, this study aims to present a modeling and performance analysis of a direct air-cooled Water/LiBr absorption chiller. The chiller is considered to be coupled to a small residential building at an arid zone situated in south Algeria. The system is modeled with TRNSYS simulation program. The main objective is to study the feasibility of the chosen system in arid zones and to apply a simplified method to predict the performance of the system by mean of the characteristic equation approach tacking in account the influence of the climatic conditions of the considered site, the collector area and storage volume of the hot water tank on the performance of the installation. First, the results of the system modeling are compared with an experimental data from the open literature and the developed model is then validated. In another hand, a parametric study is performed to analyze the performance of the direct air-cooled absorption chiller at the operating conditions of interest for the present study. Thus, the obtained results has shown that the studied system can present a good alternative for cooling systems in arid zones since the cooling load is roughly in phase with solar availability.Keywords: absorption chiller, air-cooled, arid zone, thermal comfort
Procedia PDF Downloads 2304812 Fuzzy Availability Analysis of a Battery Production System
Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz
Abstract:
In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)
Procedia PDF Downloads 2244811 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.Keywords: function tuner method (FTM), fuzzy modeling, fuzzy PID controller, genetic algorithm (GA)
Procedia PDF Downloads 3094810 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements
Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck
Abstract:
This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow
Procedia PDF Downloads 135