Search results for: received signal strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7448

Search results for: received signal strength

6548 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 236
6547 Fire Performance of Fly Ash Concrete with Pre-Fire Load

Authors: Kunjie Fan

Abstract:

Fly ash has been widely used as supplemental cementitious material in concrete for decades, especially in the ready-mixed concrete industry. Addition of fly ash not only brings economic and environmental benefits but also improves the engineering properties of concrete. It is well known that the pre-fire load has significant impacts on mechanical properties of concrete at high temperatures, however, the fire performance of stressed fly ash concrete is still not clear. Therefore, an apparatus was specially designed for testing “hot” mechanical properties of fly ash concrete with different heating-loading regimes. Through the experimental research, the mechanical properties, including compressive strength, peak strain, elastic modulus, complete stress-strain relationship, and transient thermal creep of fly ash concrete under uniaxial compression at elevated temperatures, have been investigated. It was found that the compressive strength and the elastic modulus increase with the load level, while the peak strain decreases with the applied stress level. In addition, 25% replacement of OPC with FA in the concrete mitigated the deterioration of the compressive strength, the development of transient thermal creep, and the nonlinearity of stress-strain response at elevated temperatures but hardly influenced the value of the elastic modulus and the peak strain. The applicability of Eurocode EN1992-1-2 to normal strength concrete with 25% replacement of fly ash has been verified to be safe. Based on the experimental analysis, an advanced constitutive model for stressed fly ash concrete at high temperatures was proposed.

Keywords: fire performance, fly ash concrete, pre-fire load, mechanical properties, transient thermal creep

Procedia PDF Downloads 64
6546 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software

Authors: Chandra Mukherjee

Abstract:

The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.

Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction

Procedia PDF Downloads 400
6545 The Effect of Surgical Intervention on Pediatric and Adolescent Obstructive Sleep Apnea Syndrome

Authors: Ching-Yi Yiu, Hui-Chen Hsu

Abstract:

Objectives: Obstructive sleep apnea syndrome (OSAS) is a popular problem in the modern society. It usually leads to sleep disorder, excessive daytime sleepiness and associated with cardiovascular diseases, cognitive dysfunction and even death. The nonsurgical therapies include continuous positive airway pressure (CPAP), diet and oral appliances. The surgical approaches have nasal surgery, tonsillectomy, adenoidectomy, uvulopalatopharyngoplasty (UPPP) and transoral robotic surgery (TORS).We compare the impact of surgical treatments on these kinds of patients. Methods: Between January 2018 to September 2022, We have enrolled 125 OSAS patients including 82 male and 43 female in Chi Mei Medical Center, Liouying, Taiwan. The age distribution from 6 to 71 years old (y/o) with mean age 36.1 y/o. The averaged body mass index (BMI) is 25 kg/m2 in male and 25.5 kg/m2 in female. In this cohort, we evaluated their upper airway obstruction sites with nasopharyngoscopy and scheduled a planned surgery. Some of cases received polysomnography (PSG) preoperatively, the averaged apnea-hypopnea index (AHI) is 37.7 events/hour. We have 68 patients received tonsillectomy, 9 received UPPP, 42 received UPPP and septomeatoplasty (SMP) and 6 received adenoidectomy and tonsillectomy (A and T). The subjective daytime sleepiness was evaluated with the Epworth sleepiness scale (ESS). Results: In the 68 tonsillectomy group, the averaged BMI is 24.9 kg/m2. In the UPPP group, the averaged BMI is 28.9 kg/m2. In UPPP and SMP group, the averaged BMI is 27.9 kg/m2. In the A and T group, the averaged BMI is 17.2 kg/m2. The reduction of AHI less than 20 is 58% postoperatively. The ESS reduced from 10.9 to 4.9 after surgery. Conclusion: Obstructive sleep apnea syndrome is a common upper airway disturbance in the general population. The prevalence rate is ranging high depending on different regions, age, sex and race. It leads to severe morbidity and mortality including car accident, stroke, nocturnal desaand sudden death and should be considered to be a major public health problem. The CPAP is effective to improve daytime sleepiness but the long-term compliance is low. The surgical treatment with different modalities can produce 50% decrease in AHI and ESS after surgery in the 6 to 12 months short-term period.

Keywords: apnea-hypopnea index, obstructive sleep apnea syndrome, polysomnography, uvulopalatopharyngoplasty

Procedia PDF Downloads 80
6544 X-Ray Detector Technology Optimization In CT Imaging

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 249
6543 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete

Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain

Abstract:

The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.

Keywords: cathode ray tube, glass, coarse aggregate, compressive strength

Procedia PDF Downloads 151
6542 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 378
6541 Forensic Comparison of Facial Images for Human Identification

Authors: D. P. Gangwar

Abstract:

Identification of human through facial images has got great importance in forensic science. The video recordings, CCTV footage, passports, driver licenses and other related documents are invariably sent to the laboratory for comparison of the questioned photographs as well as video recordings with suspected photographs/recordings to prove the identity of a person. More than 300 questioned and 300 control photographs received in actual crime cases, received from various investigation agencies, have been compared by me so far using various familiar analysis and comparison techniques such as Holistic comparison, Morphological analysis, Photo-anthropometry and superimposition. On the basis of findings obtained during the examination huge photo exhibits, a realistic and comprehensive technique has been proposed which could be very useful for forensic.

Keywords: CCTV Images, facial features, photo-anthropometry, superimposition

Procedia PDF Downloads 517
6540 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 420
6539 Experimentation and Analysis of Reinforced Basalt and Carbon Fibres Composite Laminate Mechanical Properties

Authors: Vara Prasad Vemu

Abstract:

The aim of the present work is to investigate the mechanical properties and water absorption capacity of carbon and basalt fibers mixed with matrix epoxy. At present, there is demand for nature friendly products. Basalt reinforced composites developed recently, and these mineral amorphous fibres are a valid alternative to carbon fibres for their lower cost and to glass fibres for their strength. The present paper describes briefly on basalt and carbon fibres (uni-directional) which are used as reinforcement materials for composites. The matrix epoxy (LY 556-HY 951) is taken into account to assess its influence on the evaluated parameters. In order to use reinforced composites for structural applications, it is necessary to perform a mechanical characterization. With this aim experiments like tensile strength, flexural strength, hardness and water absorption are performed. Later the mechanical properties obtained from experiments are compared with ANSYS software results.

Keywords: carbon fibre, basalt fibre, uni-directional, reinforcement, mechanical tests, water absorption test, ANSYS

Procedia PDF Downloads 186
6538 Effect of Feed Additives, Allium sativum and Argana spinosa Oil on the Growth of Rainbow Trout Fingerlings (Oncorhynchus mykiss)

Authors: El Hassan Abba, Touria Hachi, Mhamed Khaffou, Nezha El Adel, Abdelkhalek Zraouti, Hassan ElIdrissi

Abstract:

The present study has the overall objective of studying the effect of garlic and Argan oil on the growth of Rainbow trout (Oncorhynchus mykiss) fingerlings at the Ras El Ma (Azrou) salmon farming station during the 2023 production period. The fingerlings were distributed in seven tanks at a rate of 1000 per lot. The first control tank (B0) received only the feed without additives. Tanks B1, B2, B3, and B4 received garlic as a feed additive at a rate of 1%, 1.5%, 2% and 2.5% respectively. The fingerlings in tanks B5 and B6, in addition to 2.5% garlic, received 5 and 10ml argon oil, respectively. During this two-month experiment, the weight growth of the fingerlings and the physico-chemical parameters of the water that are favorable for fry rearing (hydrogen potential, temperature, dissolved oxygen, and electrical conductivity) were monitored. The weight growth of fingerlings receiving garlic was positive (mean weight: 4.95g, 5.43g, 5.13g, and 5.06g) compared with control fingerlings (mean weight: 3.88g). The maximum average weight was obtained with 1.5% garlic (average weight: 5.43g). The addition of 5 and 10ml of argon oil to B5 and B6 resulted in a slight increase in weight for the B5 fingerlings (5.37g) compared with the B4 control fingerlings (mean weight: 5.06g) but a minor decrease for the B6 batch (4.73g). The experimental results showed that the use of these feed additives had a positive effect on growth and yield, regardless of the quantities used.

Keywords: Oncorhychus mykiss, fry, feed additive, garlic, argon oil, weight growth

Procedia PDF Downloads 70
6537 Application of Envelope Spectrum Analysis and Spectral Kurtosis to Diagnose Debris Fault in Bearing Using Acoustic Signals

Authors: Henry Ogbemudia Omoregbee, Mabel Usunobun Olanipekun

Abstract:

Debris fault diagnosis based on acoustic signals in rolling element bearing running at low speed and high radial loads are more of low amplitudes, particularly in the case of debris faults whose signals necessitate high sensitivity analyses. As the rollers in the bearing roll over debris trapped in grease used to lubricate the bearings, the envelope signal created by amplitude demodulation carries additional diagnostic information that is not available through ordinary spectrum analysis of the raw signal. The kurtosis value obtained for three different scenarios (debris induced, outer crack induced, and a normal good bearing) couldn't be used to easily identify whether the used bearings were defective or not. It was established in this work that the envelope spectrum analysis detected the fault signature and its harmonics induced in the debris bearings when bandpass filtering of the raw signal with the frequency band specified by kurtogram and spectral kurtosis was made.

Keywords: rolling bearings, rolling element bearing noise, bandpass filtering, harmonics, envelope spectrum analysis, spectral kurtosis

Procedia PDF Downloads 70
6536 Peeling Behavior of Thin Elastic Films Bonded to Rigid Substrate of Random Surface Topology

Authors: Ravinu Garg, Naresh V. Datla

Abstract:

We study the fracture mechanics of peeling of thin films perfectly bonded to a rigid substrate of any random surface topology using an analytical formulation. A generalized theoretical model has been developed to determine the peel strength of thin elastic films. It is demonstrated that an improvement in the peel strength can be achieved by modifying the surface characteristics of the rigid substrate. Characterization study has been performed to analyze the effect of different parameters on effective peel force from the rigid surface. Different surface profiles such as circular and sinusoidal has been considered to demonstrate the bonding characteristics of film-substrate interface. Condition for the instability in the debonding of the film is analyzed, where the localized self-debonding arises depending upon the film and surface characteristics. This study is towards improved adhesion strength of thin films to rigid substrate using different textured surfaces.

Keywords: debonding, fracture mechanics, peel test, thin film adhesion

Procedia PDF Downloads 436
6535 Effect of Low Level Laser Therapy versus Polarized Light Therapy on Oral Mucositis in Cancer Patients Receiving Chemotherapy

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

The goal of this study is to compare the efficacy of polarised light therapy with low-intensity laser therapy in treating oral mucositis brought on by chemotherapy in cancer patients. Evaluation procedures are the measurement of the WHO oral mucositis scale and the Common toxicity criteria scale. Techniques: Cancer patients (men and women) who had oral mucositis, ulceration, and discomfort and whose ages varied from 30 to 55 years were separated into two groups and received 40 chemotherapy treatments. Twenty patients in Group (A) received low-level laser therapy (LLLT) along with their regular oral mucositis medication treatment, while twenty patients in Group (B) received Bioptron light therapy (BLT) along with their regular oral mucositis medication treatment. Both treatments were applied for 10 minutes each day for 30 days. Conclusion and results: This study showed that the use of both BLT and LLLT on oral mucositis in cancer patients following chemotherapy greatly improved, as seen by the sharp falls in both the WHO oral mucositis scale (OMS) and the common toxicity criteria scale (CTCS). However, low-intensity laser therapy (LLLT) was superior to Bioptron light therapy in terms of benefits (BLT).

Keywords: Bioptron light therapy, low level laser therapy, oral mucositis, WHO oral mucositis scale, common toxicity criteria scale

Procedia PDF Downloads 231
6534 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays

Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze

Abstract:

After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.

Keywords: concrete substrate, surface preparation, overlays, bond tensile strength

Procedia PDF Downloads 445
6533 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834

Procedia PDF Downloads 433
6532 X-Ray Detector Technology Optimization in Computed Tomography

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 185
6531 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 419
6530 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 194
6529 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 240
6528 Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018

Authors: Jasvinder Singh, Manjinder Singh

Abstract:

Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced.

Keywords: SAW, Tensile Strength (TS), fracture toughness, micro hardness

Procedia PDF Downloads 527
6527 The Use of Piezocone Penetration Test Data for the Assessment of Iron Ore Tailings Liquefaction Susceptibility

Authors: Breno M. Castilho

Abstract:

The Iron Ore Quadrangle, located in the state of Minas Gerais, Brazil is responsible for most of the country’s iron ore production. As a result, some of the biggest tailings dams in the country are located in this area. In recent years, several major failure events have happened in Tailings Storage Facilities (TSF) located in the Iron Ore Quadrangle. Some of these failures were found to be caused by liquefaction flowslides. This paper presents Piezocone Penetration Test (CPTu) data that was used, by applying Olson and Peterson methods, for the liquefaction susceptibility assessment of the iron ore tailings that are typically found in most TSF in the area. Piezocone data was also used to determine the steady-state strength of the tailings so as to allow for comparison with its drained strength. Results have shown great susceptibility for liquefaction to occur in the studied tailings and, more importantly, a large reduction in its strength. These results are key to understanding the failures that took place over the last few years.

Keywords: Piezocone Penetration Test CPTu, iron ore tailings, mining, liquefaction susceptibility assessment

Procedia PDF Downloads 222
6526 Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material

Authors: Mohammad Khan, Arnaud Castel

Abstract:

Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level.

Keywords: ferronickel slag, restraint shrinkage, tensile creep, time to cracking

Procedia PDF Downloads 174
6525 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 199
6524 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 69
6523 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 44
6522 Customer Satisfaction for Integrated Marketing Communication in Department Store Chiang Mai Province

Authors: Teerapong Chaisen, Pornpan Puttaraksa, Chayanit Chitchai, Peeraya Somsak, Rinyaphat Kecharananta

Abstract:

This paper aims to study integrated marketing communication (IMC) of department store in Chiang Mai with the object to understand how department stores manage communication in order to inform customer and how customers react to the received information. We study the example of 300 customers both Thai and foreigners who received the given information from the department stores and the reactions of these customers. This paper shows Central festival is the top destination to visit for Thai customers. On the other hand, Central Plaza is favored by foreign customers. However, all department stores need to use more IMC to make awareness for customer.

Keywords: integrated marketing communication, satisfaction, department store, consumer

Procedia PDF Downloads 307
6521 Study on Brick Aggregate Made Pervious Concrete at Zero Fine Level

Authors: Monjurul Hasan, Golam Kibria, Abdus Salam

Abstract:

Pervious concrete is a form of lightweight porous concrete, obtained by eliminating the fine aggregate from the normal concrete mix. The advantages of this type of concrete are lower density, lower cost due to lower cement content, lower thermal conductivity, relatively low drying shrinkage, no segregation and capillary movement of water. In this paper an investigation is made on the mechanical response of the pervious concrete at zero fine level (zero fine concrete) made with local brick aggregate. Effect of aggregate size variation on the strength, void ratio and permeability of the zero fine concrete is studied. Finally, a comparison is also presented between the stone aggregate made pervious concrete and brick aggregate made pervious concrete. In total 75 concrete cylinder were tested for compressive strength, 15 cylinder were tested for void ratio and 15 cylinder were tested for permeability test. Mix proportion (cement: Coarse aggregate) was kept fixed at 1:6 (by weights), where water cement ratio was valued 0.35 for preparing the sample specimens. The brick aggregate size varied among 25mm, 19mm, 12mm. It has been found that the compressive strength decreased with the increment of aggregate size but permeability increases and concrete made with 19mm maximum aggregate size yields the optimum value. No significant differences on the strength and permeability test are observed between the brick aggregate made zero fine concrete and stone aggregate made zero fine concrete.

Keywords: pervious concrete, brick aggregate concrete, zero fine concrete, permeability, porosity

Procedia PDF Downloads 531
6520 Factors Associated with Uptake of Influenza and Pertussis Vaccination in Pregnant Women

Authors: Hassen Mohammed, Michelle Clarke, Helen Marshall

Abstract:

Maternal immunization is an effective strategy to protect pregnant women and their offspring from vaccine-preventable diseases. Despite the recommendation of maternal influenza and more recently pertussis immunization in Australia, uptake of these vaccines has been suboptimal. Monitoring the impact of the current funded vaccine programs for pregnant women is limited. The study aimed to assess the impact of the funded program and determine factors associated with vaccine uptake in pregnant women. This observational prospective study was undertaken between November 2014 and July 2016 at the Women’s and Children’s Hospital in South Australia (WCH). Demographic details and vaccination history from South Australian pregnant women who attended the WCH were reviewed. A standardized self-reported survey was conducted in antenatal care with a follow up telephone interview at 8-10 weeks post-delivery. A midwife delivered immunization program for pregnant women in antenatal clinic commenced in April 2015. Of the 180 pregnant women who completed the survey questionnaire, 75.5% and 80.5 % received maternal influenza and pertussis vaccines respectively. First-time mothers had twice the odds of having received influenza vaccine during pregnancy than multiparous women (OR 2.4; CI 1.14 - 4.94; p= 0.021). The proportion of women who received pertussis vaccine during pregnancy, following the introduction of the midwife delivered pertussis vaccination program (140/155, 90.3%) was significantly higher compared with women who received maternal pertussis vaccination prior to the introduction of the program (5/22, 23.7%, p < 0.001). The odds of women receiving maternal pertussis vaccine following the implementation of the midwife delivered program were 31 times higher than women who delivered babies prior to the program (OR 31.7, CI 10.24- 98.27; p < 0.001). High uptake of influenza and pertussis vaccines during pregnancy can be attained with health care provider recommendation and inclusion of maternal immunization as part of standard antenatal care.

Keywords: influenza, maternal immunization, pertussis, provider recommendation

Procedia PDF Downloads 260
6519 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete

Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim

Abstract:

Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.

Keywords: high strength concrete, mineral admixture, fire resistance, social disaster

Procedia PDF Downloads 132