Search results for: governmental building renovation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4469

Search results for: governmental building renovation

3569 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes

Authors: Mohsen Abdelrazek Khorshid Ali Selim

Abstract:

Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.

Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement

Procedia PDF Downloads 54
3568 Usability Guidelines for Arab E-Government Websites

Authors: Omyma Alosaimi, Asma Alsumait

Abstract:

The website developer and designer should follow usability guidelines to provide a user-friendly interface. Many guidelines and heuristics have been developed by previous studies to help both the developer and designer in this task, but E-government websites are special cases that require specialized guidelines. This paper introduces a set of eighteen guidelines for evaluating the usability of e-government websites in general and Arabic e-government websites specifically, along with a check list of how to apply them. The validity and effectiveness of these guidelines were evaluated against a variety of user characteristics. The results indicated that the proposed set of guidelines can be used to identify qualitative similarities and differences with user testing and that the new set is best suited for evaluating general and e-governmental usability.

Keywords: e-government, human computer interaction, usability evaluation, usability guidelines

Procedia PDF Downloads 379
3567 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer

Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma

Abstract:

Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.

Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material

Procedia PDF Downloads 53
3566 Dynamic Building Simulation Based Study to Understand Thermal Behavior of High-Rise Structural Timber Buildings

Authors: Timothy O. Adekunle, Sigridur Bjarnadottir

Abstract:

Several studies have investigated thermal behavior of buildings with limited studies focusing on high-rise buildings. Of the limited investigations that have considered thermal performance of high-rise buildings, only a few studies have considered thermal behavior of high-rise structural sustainable buildings. As a result, this study investigates the thermal behavior of a high-rise structural timber building. The study aims to understand the thermal environment of a high-rise structural timber block of apartments located in East London, UK by comparing the indoor environmental conditions at different floors (ground and upper floors) of the building. The environmental variables (temperature and relative humidity) were measured at 15-minute intervals for a few weeks in the summer of 2012 to generate data that was considered for calibration and validation of the simulated results. The study employed mainly dynamic thermal building simulation using DesignBuilder by EnergyPlus and supplemented with environmental monitoring as major techniques for data collection and analysis. The weather file (Test Reference Years- TRYs) for the 2000s from the weather generator carried out by the Prometheus Group was considered for the simulation since the study focuses on investigating thermal behavior of high-rise structural timber buildings in the summertime and not in extreme summertime. In this study, the simulated results (May-September of the 2000s) will be the focus of discussion, but the results will be briefly compared with the environmental monitoring results. The simulated results followed a similar trend with the findings obtained from the short period of the environmental monitoring at the building. The results revealed lower temperatures are often predicted (at least 1.1°C lower) at the ground floor than the predicted temperatures at the upper floors. The simulated results also showed that higher temperatures are predicted in spaces at southeast facing (at least 0.5°C higher) than spaces in other orientations across the floors considered. There is, however, a noticeable difference between the thermal environment of spaces when the results obtained from the environmental monitoring are compared with the simulated results. The field survey revealed higher temperatures were recorded in the living areas (at least 1.0°C higher) while higher temperatures are predicted in bedrooms (at least 0.9°C) than living areas for the simulation. In addition, the simulated results showed spaces on lower floors of high-rise structural timber buildings are predicted to provide more comfortable thermal environment than spaces on upper floors in summer, but this may not be the same in wintertime due to high upward movement of hot air to spaces on upper floors.

Keywords: building simulation, high-rise, structural timber buildings, sustainable, temperatures, thermal behavior

Procedia PDF Downloads 169
3565 Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity

Authors: Magda Posani, Maria Do Rosario Veiga, Vasco Peixoto De Freitas

Abstract:

The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated.

Keywords: books, historic buildings, hygroscopicity, relative humidity

Procedia PDF Downloads 135
3564 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: L60, Q43, H81, C52, E31, ARDL, cointegration, Nigeria's manufacturing

Procedia PDF Downloads 148
3563 Humanitarian Emergency of the Refugee Condition for Central American Immigrants in Irregular Situation

Authors: María de los Ángeles Cerda González, Itzel Arriaga Hurtado, Pascacio José Martínez Pichardo

Abstract:

In México, the recognition of refugee condition is a fundamental right which, as host State, has the obligation of respect, protect, and fulfill to the foreigners – where we can find the figure of immigrants in irregular situation-, that cannot return to their country of origin for humanitarian reasons. The recognition of the refugee condition as a fundamental right in the Mexican law system proceeds under these situations: 1. The immigrant applies for the refugee condition, even without the necessary proving elements to accredit the humanitarian character of his departure from his country of origin. 2. The immigrant does not apply for the recognition of refugee because he does not know he has the right to, even if he has the profile to apply for. 3. The immigrant who applies fulfills the requirements of the administrative procedure and has access to the refugee recognition. Of the three situations above, only the last one is contemplated for the national indexes of the status refugee; and the first two prove the inefficiency of the governmental system viewed from its lack of sensibility consequence of the no education in human rights matter and which results in the legal vulnerability of the immigrants in irregular situation because they do not have access to the procuration and administration of justice. In the aim of determining the causes and consequences of the no recognition of the refugee status, this investigation was structured from a systemic analysis which objective is to show the advances in Central American humanitarian emergency investigation, the Mexican States actions to protect, respect and fulfil the fundamental right of refugee of immigrants in irregular situation and the social and legal vulnerabilities suffered by Central Americans in Mexico. Therefore, to achieve the deduction of the legal nature of the humanitarian emergency from the Human Rights as a branch of the International Public Law, a conceptual framework is structured using the inductive deductive method. The problem statement is made from a legal framework to approach a theoretical scheme under the theory of social systems, from the analysis of the lack of communication of the governmental and normative subsystems of the Mexican legal system relative to the process undertaken by the Central American immigrants to achieve the recognition of the refugee status as a human right. Accordingly, is determined that fulfilling the obligations of the State referent to grant the right of the recognition of the refugee condition, would mean a guideline for a new stage in Mexican Law, because it would enlarge the constitutional benefits to everyone whose right to the recognition of refugee has been denied an as consequence, a great advance in human rights matter would be achieved.

Keywords: central American immigrants in irregular situation, humanitarian emergency, human rights, refugee

Procedia PDF Downloads 277
3562 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times

Authors: Nagham Ismail, Djamel Ouahrani

Abstract:

Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.

Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather

Procedia PDF Downloads 58
3561 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 100
3560 Household Energy Usage in Nigeria: Emerging Advances for Sustainable Development

Authors: O. A. Akinsanya

Abstract:

This paper presents the emerging trends in household energy usage in Nigeria for sustainable development. The paper relied on a direct appraisal of energy use in the residential sector and the use of a structured questionnaire to establish the usage pattern, energy management measures and emerging advances. The use of efficient appliances, retrofitting, smart building and smart attitude are some of the benefitting measures. The paper also identified smart building, prosumer activities, hybrid energy use, improved awareness, and solar stand-alone street/security lights as the trend and concluded that energy management strategies would result in a significant reduction in the monthly bills and peak loads as well as the total electricity consumption in Nigeria and therefore it is good for sustainable development.

Keywords: household, energy, trends, strategy, sustainable, Nigeria

Procedia PDF Downloads 52
3559 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta

Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta

Abstract:

Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.

Keywords: rain water, tube, water resource, groundwater

Procedia PDF Downloads 209
3558 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami

Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda

Abstract:

Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.

Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort

Procedia PDF Downloads 53
3557 Effect of Freeze-Thaw (F-T) Processes on the Engineering and Textural Properties of Nevşehir Stone (Nevşehir / Turkey)

Authors: İsmail İnce, Mustafa Fener

Abstract:

Natural stones used as building materials are exposed to various direct or indirect atmospheric effects depending on the climatic and seasonal conditions. Stones deteriorate partially or fully as a result of these effects. Freezing and thawing (F-T) process is the most important interaction. Nevşehir is located in the Central Anatolia region in Turkey and it has a typical continental climate with cold, snowy winters and hot, dry summers. Effects of freeze-thaw processes were widely observed on the building stones used in the region. Pyroclastic rocks, which are named as Nevşehir stone in the region, have been used in most of these buildings. The purpose of this study is to investigate the variations in engineering and textural properties of Nevşehir stone during different F-T cycles.

Keywords: Nevşehir stone, freeze-thaw, engineering properties, textural properties

Procedia PDF Downloads 961
3556 Modern Forms and Aesthetics in Design

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

The term ‘’FORM’’ in design could be referred to as the combination of various shapes of different sizes and assembling them in appropriate positions to achieve a unique figure of high aesthetic value. A deduction from this definition is that forms contribute immensely to the actualization of aesthetics in a building. When these various shapes and figures are properly assembled, it may give rise to a concept in design. However some architects and other designers either misuse or abuse the use of these shapes, hence resulting to a design imbalance, lack of uniformity and expression. This academic work is designed to educate the public on the proper usage of some regular shapes like circles, rectangles, pentagons, hexagons, triangles etc, to achieve a unique form in design. By the end of this work, one should be able to assemble different shapes to express different emotions of the mind, such as peace, love, confusion, war, and unity. Some elements of design, such as balance, stability, functionality and aesthetics, will also be achieved even as the building maintains its unique form.

Keywords: aesthetics, form, balance, stability

Procedia PDF Downloads 70
3555 An Ontology Model for Systems Engineering Derived from ISO/IEC/IEEE 15288: 2015: Systems and Software Engineering - System Life Cycle Processes

Authors: Lan Yang, Kathryn Cormican, Ming Yu

Abstract:

ISO/IEC/IEEE 15288: 2015, Systems and Software Engineering - System Life Cycle Processes is an international standard that provides generic top-level process descriptions to support systems engineering (SE). However, the processes defined in the standard needs improvement to lift integrity and consistency. The goal of this research is to explore the way by building an ontology model for the SE standard to manage the knowledge of SE. The ontology model gives a whole picture of the SE knowledge domain by building connections between SE concepts. Moreover, it creates a hierarchical classification of the concepts to fulfil different requirements of displaying and analysing SE knowledge.

Keywords: knowledge management, model-based systems engineering, ontology modelling, systems engineering ontology

Procedia PDF Downloads 414
3554 Methodological Analysis and Exploration of Feminist Planning Research in the Field of Urban and Rural Planning

Authors: Xi Zuo

Abstract:

As a part of the urban population that cannot be ignored, women have long been less involved in urban planning due to socio-economic constraints. Urban planning and development have long been influenced by the mainstream "male standard," paying less attention to women's needs for space in the city. However, with the development of the economy and society and the improvement of women's social status, their participation in urban life is gradually increasing, and their needs for the city are diversifying. Therefore, different scholars, planning designers and governmental departments have explored this field in different degrees and directions. This paper summarizes the research on urban planning from women's perspectives and, discusses its strengths, weaknesses, and methodology with specific case studies, and then further discusses the direction of further research on this topic.

Keywords: urban planning, feminism, methodology, gender

Procedia PDF Downloads 60
3553 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach

Authors: Wei Zhao

Abstract:

The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.

Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community

Procedia PDF Downloads 170
3552 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 218
3551 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra

Procedia PDF Downloads 213
3550 Ecosystem Services Assessment for Urban Nature-Based Solutions Implemented in the Public Space: Case Study of Alhambra Square in Bogotá, Colombia

Authors: Diego Sánchez, Sandra M. Aguilar, José F. Gómez, Gustavo Montaño, Laura P. Otero, Carlos V. Rey, José A. Martínez, Juliana Robles, Jorge E. Burgos, Juan S. López

Abstract:

Bogota is making efforts towards urban resilience through Nature-based Solutions (NbS) incorporation in public projects as a climate change resilience strategy. The urban renovation project on the Alhambra square includes Green Infrastructure (GI), like Sustainable Urban Drainage Systems (SUDS) and Urban Trees (UT), as ecosystem services (ES) boosters. This study analyzes 3 scenarios: (1) the initial situation without NbS, (2) the expected situation including NbS in the design and (3) the projection of the second one after 30 years, calculating the ecosystem services, the stormwater management benefits provided by SUDS and the cultural services. The obtained results contribute to the understanding of the urban NbS benefits in public spaces, providing valuable information to foster investment in sustainable projects and encouraging policy makers to integrate NbS in urban planning.

Keywords: ecosystem services, nature-based solutions, stormwater management, sustainable urban drainage systems

Procedia PDF Downloads 133
3549 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 113
3548 Effect of Irregularities on Seismic Performance of Building

Authors: Snehal Mevada, Darshana Bhatt, Aryan Kalthiya, Neel Parmar, Vishal Baraiya, Dhruvit Bhanderi, Tisha Patel

Abstract:

In multi-storeyed framed buildings, damage occurring from earthquake ground motion generally initiates at locations of structural weaknesses present in the lateral load-resisting frame. In some cases, these weaknesses may be created by discontinuities in stiffness, mass, plan, and torsion. Such discontinuity between storeys is often associated with sudden variations in the vertical geometric irregularities and plan irregularities. Vertical irregularities are structures with a soft storey that can further be broken down into the different types of irregularities as well as their severity for a more refined assessment tool pushover analysis which is one of the methods available for evaluating building against earthquake loads. So, it is very necessary to analyse and understand the seismic performance of the irregular structure in order to reduce the damage which occurs during an earthquake. In this project, a multi-storey (G+4) RCC building with four irregularities (stiffness, mass, plan, torsion) is studied for earthquake loads using the response spectrum method (dynamic analysis) and STADD PRO. All analyses have been done for seismic zone IV and for Medium Soil. In this study effects of different irregularities are analysed based on storey displacement, storey drift, and storey shear.

Keywords: comparison of regular and irregular structure, dynamic analysis, mass irregularity, plan irregularity, response spectrum method, stiffness irregularity, seismic performance, torsional irregularity, STAAD PRO

Procedia PDF Downloads 63
3547 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 72
3546 Structural-Geotechnical Effects of the Foundation of a Medium-Height Structure

Authors: Valentina Rodas, Luis Almache

Abstract:

The interaction effects between the existing soil and the substructure of a 5-story building with an underground one were evaluated in such a way that the structural-geotechnical concepts were validated through the method of impedance factors with a program based on the method of the finite elements. The continuous wall-type foundation had a constant thickness and followed inclined and orthogonal directions, while the ground had homogeneous and medium-type characteristics. The soil considered was type C according to the Ecuadorian Construction Standard (NEC) and the corresponding foundation comprised a depth of 4.00 meters and a basement wall thickness of 40 centimeters. This project is part of a mid-rise building in the city of Azogues (Ecuador). The hypotheses raised responded to the objectives in such a way that the model implemented with springs had a variation with respect to the embedded base, obtaining conservative results.

Keywords: interaction, soil, substructure, springs, effects, modeling , embedment

Procedia PDF Downloads 208
3545 Four Museums for One (Hi) Story

Authors: Sheyla Moroni

Abstract:

A number of scholars around the world have analyzed the great architectural and urban planning revolution proposed by Skopje 2014, but so far, there are no readings of the parallels between the museums in the Balkan area (including Greece) that share the same name as the museum at the center of that political and cultural revolution. In the former FYROM (now renamed North Macedonia), a museum called "Macedonian Struggle" was born during the reconstruction of the city of Skopje as the new "national" capital. This new museum was built under the "Skopje 2014" plan and cost about 560 million euros (1/3 of the country's GDP). It has been a "flagship" of the government of Nikola Gruevski, leader of the nationalist VMRO-DPMNE party. Until 2016 this museum was close to the motivations of the Macedonian nationalist movement (and later party) active (including terrorist actions) during the 19th and 20th centuries. The museum served to narrate a new "nation-building" after "state-building" had already taken place. But there are three other museums that tell the story of the "Macedonian struggle" by understanding "Macedonia" as a territory other than present-day North Macedonia. The first one is located in Thessaloniki and primarily commemorates the "Greek battle" against the Ottoman Empire. While the first uses a new dark building and many reconstructed rooms and shows the bloody history of the quest for "freedom" for the Macedonian language and people (different from Greeks, Albanians, and Bulgarians), the second is located in an old building in Thessaloniki and in its six rooms on the ground floor graphically illustrates the modern and contemporary history of Greek Macedonia. There are also third and fourth museums: in Kastoria (toward the Albanian border) and in Chromio (near the Greek-North Macedonian border). These two museums (Kastoria and Chromio) are smaller, but they mark two important borders for the (Greek) regions bordering Albania to the east and dividing it to the northwest not only from the Ottoman past but also from two communities felt to be "foreign" (Albanians and former Yugoslav Macedonians). All museums reconstruct a different "national edifice" and emphasize the themes of language and religion. The objective of the research is to understand, through four museums bearing the same name, what are the main "mental boundaries" (religious, linguistic, cultural) of the different states (reconstructed between the late 19th century and 1991). Both classical historiographic methodology (very different between Balkan and "Western" areas) and on-site observation and interactions with different sites are used in this research. An attempt is made to highlight four different political focuses with respect to nation-building and the Public History (and/or propaganda) approaches applied in the construction of these buildings and memorials tendency often that one "defines" oneself by differences from "others" (even if close).

Keywords: nationalisms, museum, nation building, public history

Procedia PDF Downloads 69
3544 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: energy efficiency, landscape design, plant design, xeriscape landscape

Procedia PDF Downloads 249
3543 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction

Authors: Bruce Wrightsman

Abstract:

Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.

Keywords: wood building systems, material histories, monocoque systems, construction waste

Procedia PDF Downloads 69
3542 Botswana and Nation-Building Theory

Authors: Rowland Brucken

Abstract:

This paper argues that nation-building theories that prioritize democratic governance best explain the successful post-independence development of Botswana. Three main competing schools of thought exist regarding the sequencing of policies that should occur to re-build weakened or failed states. The first posits that economic development should receive foremost attention, while democratization and a binding sense of nationalism can wait. A second group of experts identified constructing a sense of nationalism among a populace is necessary first, so that the state receives popular legitimacy and obedience that are prerequisites for development. Botswana, though, transitioned into a multi-party democracy and prosperous open economy due to the utilization of traditional democratic structures, enlightened and accountable leadership, and an educated technocratic civil service. With these political foundations already in place when the discovery of diamonds occurred, the resulting revenues were spent wisely on projects that grew the economy, improved basic living standards, and attracted foreign investment. Thus democratization preceded, and therefore provided an accountable basis for, economic development that might otherwise have been squandered by greedy and isolated elites to the detriment of the greater population. Botswana was one of the poorest nations in the world at the time of its independence in 1966, with little infrastructure, a dependence on apartheid South Africa for trade, and a largely subsistence economy. Over the next thirty years, though, its economy grew the fastest of any nation in the world. The transparent and judicious use of diamond returns is only a partial explanation, as the government also pursued economic diversification, mass education, and rural development in response to public needs. As nation-building has become a project undertaken by nations and multilateral agencies such as the United Nations and the North Atlantic Treaty Organization, Botswana may provide best practices that others should follow in attempting to reconstruct economically and politically unstable states.

Keywords: Botswana, democratization, economic development, nation-building

Procedia PDF Downloads 496
3541 Building Knowledge Partnership for Collaborative Learning in Higher Education – An On-Line ‘Eplanete’ Knowledge Mediation Platform

Authors: S. K. Ashiquer Rahman

Abstract:

This paper presents a knowledge mediation platform, “ePLANETe Blue” that addresses the challenge of building knowledge partnerships for higher education. The purpose is to present, as an institutional perception, the ‘ePLANETe' idea and functionalities as a practical and pedagogical innovation program contributing to the collaborative learning goals in higher education. In consequence, the set of functionalities now amalgamated in ‘ePLANETe’ can be seen as an investigation of the challenges of “Collaborative Learning Digital Process.” It can exploit the system to facilitate collaborative education, research and student learning in higher education. Moreover, the platform is projected to support the identification of best practices at explicit levels of action and to inspire knowledge interactions in a “virtual community” and thus to advance in deliberation and learning evaluation of higher education through the engagement of collaborative activities of different sorts.

Keywords: mediation, collaboration, deliberation, evaluation

Procedia PDF Downloads 122
3540 A Proposal for Developing a Post Occupancy Evaluation Sustainability Assessment Tool for Refurbished Historic Government Buildings

Authors: Hasnizan Aksah, Adi Irfan Che Ani

Abstract:

Refurbished historic government buildings should perform as intended to support the organization’s goals that enhance occupant satisfaction. However, these buildings may have issues associated with functional performance evaluation. The aim of this study is to develop a Post Occupancy Evaluation (POE) sustainability assessment tool for functional performance evaluation of refurbished historic government buildings. Developing an assessment tool requires a strategic methodology for a logical and cohesive tool that incorporating relevant theories and practical experiences. In this study, mixed method approaches use to collect all necessary data to achieve the objectives of this study. The design of sampling involves are interviews and survey questionnaires to relevant professionals in order to evaluate the criteria and problem encircled in functional performance evaluation. Then, the involvement of expert panels is required in establishing the assessment tool. During the process of investigation on the functional performance criteria, it was discovered that is seen to be critical in aspects of comfort, safety, and services. The proposed assessment tool has a significant role in providing opportunities for the improvement of building performance especially on functional performance for the future historic government building refurbishment project. It is hoped that the tool developed from this study will give benefits to related professionals, public agencies, local municipality, and relevant interested parties in historic building management.

Keywords: refurbished historic government buildings, functional performance, Post Occupancy Evaluation, sustainability

Procedia PDF Downloads 187