Search results for: exchange capacity
4770 Effect of Contaminants on the Behavior of Shallow Foundations
Authors: Ghazal Horiat, Alireza Hajiani Bushehrian
Abstract:
leakage of contamination from fuel or oil reservoirs can alter the geotechnical properties of the soil under their foundation and finally affect their performance in their service life. This article investigates the behavior of shallow foundations on the soil contaminated with diesel and kerosene using the Plaxis Tunnel3D V1.2 software. The information required for the numerical modeling in the paper was obtained from a similar experimental study. The present study seeks to compare the behavior of square foundations on sandy soil without contamination and the soil contaminated with different percentages of diesel and crude oil. The study was conducted on a small square foundation. The depth of the contamination was assumed constant, and the soil was evaluated with four different percentages of both contaminants. The results of analyses were plotted and assessed in the form of load-displacement curves for the foundation. The results indicate reduced bearing capacity of the foundation with the rise in the contamination percentage.Keywords: bearing capacity, contaminated soils, shallow foundations, 3D numerical analysis
Procedia PDF Downloads 1484769 Molecular Simulation of NO, NH3 Adsorption in MFI and H-ZSM5
Authors: Z. Jamalzadeh, A. Niaei, H. Erfannia, S. G. Hosseini, A. S. Razmgir
Abstract:
Due to developing the industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is urgent environmentally. Selective Catalytic Reduction of NOx is one of the most common techniques for NOx removal in which Zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, molecular simulations is applied for studying the adsorption phenomena in nanocatalysts applied for SCR of NOx process. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC). Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the Energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 Zeolite compared to the isosteric heat of NH3 which was low in value.Keywords: Monte Carlo simulation, adsorption, NOx, ZSM5
Procedia PDF Downloads 3824768 Experimental Model of the Behaviour of Bolted Angles Connections with Stiffeners
Authors: Abdulkadir Cuneyt Aydin, Mahyar Maali, Mahmut Kılıç, Merve Sağıroğlu
Abstract:
The moment-rotation curves of semi-rigid connections are the visual expressions of the actual behaviour discovered in beam-to-column connections experiments. This research was to determine the behaviour of the connection using full-scale experiments under statically loaded. The stiffeners which are typically attached to beams web or flanges to control local buckling and to increase shear capacity in a beam web are almost always used in modern designs. They must also provide sufficient moment of inertia to control out of plane deformations. This study was undertaken to analyse the influence of stiffeners in the angles and beams on the behaviour of the beam-to-column joints. In addition, the aim was to provide necessary data to improve the Eurocode 3. The main parameters observed are the evolution of the resistance, the stiffness, the rotation capacity, the ductility of a joint and the Energy Dissipation. Experimental tests show that the plastic flexural resistance and the energy dissipation increased when thickness of stiffener beam, thickness of stiffener angles were increased in the test specimens. And also, while stiffness of joints, the bending moment capacity and the maximum bending moment increased with the increasing thickness of stiffener beam, these values decreased with the increasing thickness of stiffener angles. So, it is observed that the beam stiffener of angles are important in improving resistance moment of beam-to-column semi-rigid joints.Keywords: bolted angles connection, semi-rigid joints, ductility of a joint, angles and beams stiffeners
Procedia PDF Downloads 4644767 Empirical Analysis of the Relationship between Voluntary Accounting Disclosures and Mongolian Stock Exchange Listed Companies’ Characteristics
Authors: Ernest Nweke
Abstract:
Mongolia has made giant strides in the development of its auditing and accounting system from Soviet-style to a market-oriented system. High levels of domestic and foreign investment desired by the Mongolian government require that better and improved quality of corporate information and disclosure consistent with international standards be made available to investors. However, the Mongolian Certified Public Accountants (CPA) profession is still developing, and the quality of services provided by accounting firms in most cases do not comply with International Financial Reporting Standards (IFRS) framework approved by the government for use in financial reporting. Against this backdrop, Accounting and audit reforms, liberalization and deregulation, establishment of an efficient and effective professional monitoring and supervision regime are policy necessities. These will further enhance the Mongolian business environment, eliminate incompetence in the system, make the economy more attractive to investors and ultimately lift reporting standards and bring about improved accounting, auditing and disclosure practices among Mongolian firms. This paper examines the fundamental issues in the accounting and auditing environment in Mongolia and investigates the relationship between selected characteristics of Mongolian Stock Exchange (MSE) listed firms (profitability, leverage, firm size, firm auditor size, firm listing age, board size and proportion of independent directors) and voluntary accounting disclosures in their annual reports and accounts. The selected sample of firms for the research purpose consists of the top 20 indexes of the MSE, representing over 95% of the market capitalization. An empirical analysis of the hypothesized relationship was carried out using multiple regression in EViews analytical software. Research results lend credence to the fact that only a few of the company attributes positively impact voluntary accounting disclosures in Mongolian Stock Exchange-listed firms. The research is motivated by the absence of empirical evidence on the correlation between the quality of voluntary accounting disclosures made by listed companies in Mongolia and company characteristics and the findings thereof significantly useful to both firms and regulatory authorities. The concluding part of the paper precisely consists of useful research-based recommendations for listed firms and regulatory agencies on measures to put in place in order to enhance the quality of corporate financial reporting and disclosures in Mongolia.Keywords: accounting, auditing, corporate disclosure, listed firms
Procedia PDF Downloads 1094766 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 334765 Chemically Enhanced Primary Treatment: Full Scale Trial Results Conducted at a South African Wastewater Works
Authors: Priyanka Govender, S. Mtshali, Theresa Moonsamy, Zanele Mkwanazi, L. Mthembu
Abstract:
Chemically enhanced primary treatment (CEPT) can be used at wastewater works to improve the quality of the final effluent discharge, provided that the plant has spare anaerobic digestion capacity. CEPT can transfer part of the organic load to the digesters thereby effectively relieving the hydraulic loading on the plant and in this way can allow the plant to continue operating long after the hydraulic capacity of the plant has been exceeded. This can allow a plant to continue operating well beyond its original design capacity, requiring only fairly simple and inexpensive modifications to the primary settling tanks as well as additional chemical costs, thereby delaying or even avoiding the need for expensive capital upgrades. CEPT can also be effective at plants where high organic loadings prevent the wastewater discharge from meeting discharge standards, especially in the case of COD, phosphates and suspended solids. By increasing removals of these pollutants in the primary settling tanks, CEPT can enable the plant to conform to specifications without the need for costly upgrades. Laboratory trials were carried out recently at the Umbilo WWTW in Durban and these were followed by a baseline assessment of the current plant performance and a subsequent full scale trial on the Conventional plant i.e. West Plant. The operating conditions of the plant are described and the improvements obtained in COD, phosphate and suspended solids, are discussed. The PST and plant overall suspended solids removal efficiency increased by approximately 6% during the trial. Details regarding the effect that CEPT had on sludge production and the digesters are also provided. The cost implications of CEPT are discussed in terms of capital costs as well as operation and maintenance costs and the impact of Ferric chloride on the infrastructure was also studied and found to be minimal. It was concluded that CEPT improves the final quality of the discharge effluent, thereby improving the compliance of this effluent with the discharge license. It could also allow for a delay in upgrades to the plant, allowing the plant to operate above its design capacity. This will be elaborated further upon presentation.Keywords: chemically enhanced, ferric, wastewater, primary
Procedia PDF Downloads 3044764 Political Regimes, Political Stability and Debt Dependence in African Countries of Franc Zone: A Logistic Modeling
Authors: Nounamo Nguedie Yann Harold
Abstract:
The factors behind the debt have been the subject of several studies in the literature. Pioneering studies based on the 'double deficit' approach linked indebtedness to the imbalance between savings and investment, the budget deficit and the current account deficit. Most studies on identifying factors that may stimulate or reduce the level of external public debt agree that the following variables are important explanatory variables in leveraging debt: the budget deficit, trade opening, current account and exchange rate, import, export, interest rate, term variation exchange rate, economic growth rate and debt service, capital flight, and over-indebtedness. Few studies addressed the impact of political factors on the level of external debt. In general, however, the IMF's stabilization programs in developing countries following the debt crisis have resulted in economic recession and the advent of political crises that have resulted in changes in governments. In this sense, political institutions are recognised as factors of accumulation of external debt in most developing countries. This paper assesses the role of political factors on the external debt level of African countries in the Franc Zone over the period 1985-2016. Data used come from World Bank and ICRG. Using a logit in panel, the results show that the more a country is politically stable, the lower the external debt compared to the gross domestic product. Political stability multiplies 1.18% the chances of being in the sustainable debt zone. For example, countries with good political institutions experience less severe external debt burdens than countries with bad political institutions.Keywords: African countries, external debt, Franc Zone, political factors
Procedia PDF Downloads 2254763 Physicochemical Characterization of Peptides Isolated from Vigna unguiculata
Authors: Sonaal Ramsookmohan
Abstract:
Legume seeds are common foods in human diet and have been identied as a valuable source of human nutritonn Since they are useful sources of protein; legume proteins are used in many food applicatonsn Critcal functonal propertes are recognized to impact the quality of foodn Cowpea (Vigna unguiculata), has been well documented for its immense potental in contributng to food security forming part of daily staple diets in most developing countriesn. In this study, cowpea seeds were used to prepare cowpea four, protein isolates by the salt extractonndialysis method and peptdes by enzymatc hydrolysis using Alcalase and Flavourzymen Functonal analyses such as water absorpton capacity, oil absorpton capacity, emulsifying and foaming propertes were conducted on the cowpea peptdesn The physicochemical propertes determine their potental applicaton in food industries as functonal ingredientsn Cowpea peptdes could increase the value of cowpea by expanding its use, as well as contribute to the legume grain sector.Keywords: physicochemical, peptides, Cowpea, alcalase, flavourzyme
Procedia PDF Downloads 804762 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 4024761 Application of Modified Vermiculite for Cationic Textile Dyestuffs Removal: Sorption and Regeneration Studies
Authors: W. Stawiński, A. Wegrzyn, O. M. Freitas, S. A. Figueiredo
Abstract:
Water is a life supporting resource, crucial for humanity and essential for natural ecosystems, which have been endangered by developing industry and increasing human population. Dyes are common in effluents discharged by various industries such as paper, plastics, food, cosmetics, and textile. They produce toxic effects on animals and disturb natural biological processes in receiving waters. Having complex molecular structure and resistance to biological decomposition they are problematic and difficult to be treated by conventional methods. In the search of efficient and sustainable method, sorption has been getting more interest in application to wastewaters treatment. Clays are minerals that have a layer structure based on phyllosilicate sheets that may carry a charge, which is balanced by ions located between the sheets. These charge-balancing ions can be exchanged resulting in very good ion-exchange properties of the material. Modifications of clays enhance their properties, producing a good and inexpensive sorbent for the removal of pollutants from wastewaters. The presented work proves that the treatment of a clay, vermiculite, with nitric acid followed by washing in citric acid strongly increases the sorption of two cationic dyes, methylene blue (C.I. 52015) and astrazon red (C.I. 110825). Desorption studies showed that the best eluent for regeneration is a solution of NaCl in ethanol. Cycles of sorption and desorption in column system showed no significant deterioration of sorption capacity and proved that the material shows a very good performance as sorbent, which can be recycled and reused. The results obtained open new possibilities of further modifications on vermiculite and modifications of other materials in order to get very efficient sorbents useful for wastewater treatment.Keywords: cationic dyestuffs, sorption and regeneration, vermiculite, wastewater treatment
Procedia PDF Downloads 2674760 Nutritional Importance and Functional Properties of Baobab Leaves
Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola
Abstract:
The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range
Procedia PDF Downloads 774759 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B
Authors: Ceren Karaman, Onur Karaman
Abstract:
The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification
Procedia PDF Downloads 2524758 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell
Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene
Abstract:
The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental
Procedia PDF Downloads 1404757 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1614756 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities
Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh
Abstract:
Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.Keywords: primary health care, health system, system domains, vital signs profile
Procedia PDF Downloads 1364755 Singular Stochastic Control Model with Carrying Capacity of Population Management Policy for Squirrels in Durian Orchards
Authors: Sasiwimol Auepong, Raywat Tanadkithirun
Abstract:
In this work, the problem that squirrels ruin durian, which is an economical fruit in Thailand, is considered. We seek the strategy for the durian farmers to eliminate the squirrels under the consideration that squirrels also provide ecosystem service. The population dynamics of squirrels are constructed to have carrying capacity since we consider the population in a confined area. A performance index indicating the total benefit of a given elimination strategy is provided. It comprises the cost of countermeasures, the loss of resources, and the ecosystem service provided by squirrels. The optimal performance index is numerically solved through the variational inequality using the finite difference method. The optimal strategy to control the squirrel population is also given numerically.Keywords: controlled stochastic differential equation, durian, finite difference method, performance index, singular stochastic control model, squirrel
Procedia PDF Downloads 954754 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries
Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass
Abstract:
Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings
Procedia PDF Downloads 1274753 Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 & 12)
Authors: Ravi Prakash
Abstract:
The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results.Keywords: hydrogen storage, metal hydrides, bcc alloy, heat treatment
Procedia PDF Downloads 814752 Anti-Forensic Countermeasure: An Examination and Analysis Extended Procedure for Information Hiding of Android SMS Encryption Applications
Authors: Ariq Bani Hardi
Abstract:
Empowerment of smartphone technology is growing very rapidly in various fields of science. One of the mobile operating systems that dominate the smartphone market today is Android by Google. Unfortunately, the expansion of mobile technology is misused by criminals to hide the information that they store or exchange with each other. It makes law enforcement more difficult to prove crimes committed in the judicial process (anti-forensic). One of technique that used to hide the information is encryption, such as the usages of SMS encryption applications. A Mobile Forensic Examiner or an investigator should prepare a countermeasure technique if he finds such things during the investigation process. This paper will discuss an extension procedure if the investigator found unreadable SMS in android evidence because of encryption. To define the extended procedure, we create and analyzing a dataset of android SMS encryption application. The dataset was grouped by application characteristics related to communication permissions, as well as the availability of source code and the documentation of encryption scheme. Permissions indicate the possibility of how applications exchange the data and keys. Availability of the source code and the encryption scheme documentation can show what the cryptographic algorithm specification is used, how long the key length, how the process of key generation, key exchanges, encryption/decryption is done, and other related information. The output of this paper is an extended or alternative procedure for examination and analysis process of android digital forensic. It can be used to help the investigators while they got a confused cause of SMS encryption during examining and analyzing. What steps should the investigator take, so they still have a chance to discover the encrypted SMS in android evidence?Keywords: anti-forensic countermeasure, SMS encryption android, examination and analysis, digital forensic
Procedia PDF Downloads 1304751 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application
Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay
Abstract:
Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery
Procedia PDF Downloads 1284750 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids
Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki
Abstract:
Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction
Procedia PDF Downloads 1114749 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System
Authors: P. K. Sarkar, Amit Kumar Jain
Abstract:
The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.Keywords: urban transport, differential fares, congestion, transport demand management, elasticity
Procedia PDF Downloads 3144748 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading
Authors: Jerome Joshi
Abstract:
The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus
Procedia PDF Downloads 864747 Development of CaO-based Sorbents Applied to Sorption Enhanced Steam Reforming Processes
Authors: P. Comendador, I. Garcia, S. Orozco, L. Santamaria, M. Amutio, G. Lopez, M. Olazar
Abstract:
In situ CO₂ capture in steam reforming processes has been studied in the last years as an alternative for increasing H₂ yields and H₂ purity in the product stream. For capturing the CO₂ at the reforming conditions, CaO-based sorbents are usually employed due to their properties at high temperature, low cost and high availability. However, the challenge is to develop high-capacity (gCO₂/gsorbent) materials that retain their capacity over cycles of operation. Besides, since the objective is to capture the CO₂ generated in situ, another key aspect is the sorption dynamics, which means that, in order to efficiently use the sorbent, it has to capture the CO₂ at a rate equal to or higher than the generation rate. In this work, different CaO-based materials have been prepared to aim at meeting these criteria. First, and by using the wet mixing method, different inert materials (Mg, Ce and Al) were combined with CaO. Second, and with the inert material selected (Mg), the effect of its concentration in the final material was studied. Transversally, the calcination temperature was also evaluated. It was determined that the wet mixing method is a simple procedure suitable for the preparation of CaO sorbents mixed with inert materials. The materials prepared by mixing the CaO with Mg have shown satisfactory anti-sintering properties and adequate sorption kinetics for their application in steam reforming processes. Regarding the concentration of Mg in the solid, it was concluded that high values contribute to the stability but at the expense of losing sorption capacity. Finally, it was observed that high calcination temperatures negatively affected the sorption properties of the final materials due to the decrease in the pore volume and the specific surface area.Keywords: calcination temperature effect, CO₂ capture, Mg-Ce-Al stabilizers, Mg varying concentration effect, Sorbent stabilization
Procedia PDF Downloads 844746 Hyper-Production of Lysine through Fermentation and Its Biological Evaluation on Broiler Chicks
Authors: Shagufta Gulraiz, Abu Saeed Hashmi, Muhammad Mohsin Javed
Abstract:
Lysine required for poultry feed is imported in Pakistan to fulfil the desired dietary needs. Present study was designed to produce maximum lysine by utilizing cheap sources to save the foreign exchange. To achieve the goal of lysine production through fermentation, large scale production of lysine was carried out in 7.5 L stirred glass vessel fermenter with wild and mutant Brevibacterium flavum (B. flavum) using all pre-optimized conditions. The identification of produced lysine was carried out by TLC and amino acid analyzer. Toxicity evaluation of produced lysine was performed before feeding to broiler chicks. During biological trial concentrated fermented broth having 8% lysine was used in poultry rations as a source of Lysine for test birds. Fermenter scale studies showed that the maximum lysine (20.8 g/L) was produced at 250 rpm, 1.5 vvm aeration, 6.0% inoculum under controlled pH conditions after 56 h of fermentation with wild culture but mutant (BFENU2) gave maximum yield of lysine 36.3 g/L under optimized condition after 48 h. Amino acid profiling showed 1.826% Lysine in fermented broth by wild B. flavum and 2.644% by mutant strain (BFENU2). Toxicity evaluation report showed that the produced lysine is safe for consumption by broilers. Biological evaluation results showed that produced lysine was equally good as commercial lysine in terms of weight gain, feed intake and feed conversion ratio. A cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially in Pakistan to save foreign exchange.Keywords: lysine, fermentation, broiler chicks, biological evaluation
Procedia PDF Downloads 5504745 Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete
Authors: Jo Kwang-Won, Lee Ho-Jun, Choi In-Rak, Park Hong-Gun
Abstract:
Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam.Keywords: composite beam, prefabrication, angle, precast concrete, pratt truss
Procedia PDF Downloads 3094744 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant
Authors: Yogi Sirodz Gaos, Irvan Wiradinata
Abstract:
In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning
Procedia PDF Downloads 1454743 Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia
Authors: Azazhu Wassie
Abstract:
This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing.Keywords: dam design, peak flood, rainfall, reservoir capacity, runoff
Procedia PDF Downloads 404742 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity
Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon
Abstract:
Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry
Procedia PDF Downloads 3374741 Exploring the Potential of Phase Change Materials in Construction Environments
Authors: A. Ait Ahsene F., B. Boughrara S.
Abstract:
The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.Keywords: energy saving, phase change materials, material sustainability, buildings sector
Procedia PDF Downloads 46