Search results for: deep convolution networks
3716 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 4933715 Impact of Social Networks on Agricultural Technology Adoption: A Case Study of Ongoing Extension Programs for Paddy Cultivation in Matara District in Sri Lanka
Authors: Paulu Saramge Shalika Nirupani Seram
Abstract:
The study delves into the complex dynamics of social networks and how they affect paddy farmers’ adoption of agricultural technologies, which are included in Yaya Development program, Weedy rice program and Good Agricultural Practices (GAP) program in Matara district. Identify the social networks among the farmers of ongoing Extension Programs in Matara district, examine the farmers’ adoption level to the ongoing extension programs in Matara district, analyze the impacts of social networks for the adoption to the technologies of ongoing extension programs and give suggestions and recommendations to improve the social network of paddy farmers in Matara District for ongoing extension programs are the objectives of this research. A structured questionnaire survey was conducted with 25 farmers from Matara-North (Wilpita), 25 farmers from Matara-Central (Kamburupitiya), and 25 farmers from Matara-South (Malimbada). UCINET (Version -6.771) software was used for social network analysis, and other than that, descriptive statistics and inferential statistics were used to analyze the findings. Matara-North has the highest social network density, and Matara-South has the lowest social network density according to the social network analysis. Dissemination of intensive technologies requires the most prominent actors of the social network, and in Matara district, agricultural instructors have the highest ability to disseminate technologies. The influence of actors in the social network, the trustworthiness of AI officers, and the trust of indigenous knowledge about paddy cultivation have a significant effect on the technology adoption of farmers. The research endeavors to contribute a nuanced understanding of the social networks and agricultural technology adoption in Matara District, offering practical insights for stakeholders involved in agricultural extension services.Keywords: agricultural extension, paddy cultivation, social network, technology adoption
Procedia PDF Downloads 663714 Double Encrypted Data Communication Using Cryptography and Steganography
Authors: Adine Barett, Jermel Watson, Anteneh Girma, Kacem Thabet
Abstract:
In information security, secure communication of data across networks has always been a problem at the forefront. Transfer of information across networks is susceptible to being exploited by attackers engaging in malicious activity. In this paper, we leverage steganography and cryptography to create a layered security solution to protect the information being transmitted. The first layer of security leverages crypto- graphic techniques to scramble the information so that it cannot be deciphered even if the steganography-based layer is compromised. The second layer of security relies on steganography to disguise the encrypted in- formation so that it cannot be seen. We consider three cryptographic cipher methods in the cryptography layer, namely, Playfair cipher, Blowfish cipher, and Hills cipher. Then, the encrypted message is passed through the least significant bit (LSB) to the steganography algorithm for further encryption. Both encryption approaches are combined efficiently to help secure information in transit over a network. This multi-layered encryption is a solution that will benefit cloud platforms, social media platforms and networks that regularly transfer private information such as banks and insurance companies.Keywords: cryptography, steganography, layered security, Cipher, encryption
Procedia PDF Downloads 863713 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure
Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon
Abstract:
Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance
Procedia PDF Downloads 3373712 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City
Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng
Abstract:
Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.Keywords: human perception, public space quality, deep learning, negative elements, street images
Procedia PDF Downloads 1173711 The Impact of Neighbourhood Built-Environment on the Formulation and Facilitation of Bottom-up Mutual Help Networks for Senior Residents in Singapore
Authors: Wei Zhang, Chye Kiang Heng, John Chye Fung
Abstract:
Background: The world’s demographics is currently undergoing the largest wave of both rapid ageing and dramatic urbanisation in human history. As one of the most rapidly ageing countries, Singapore will see about one in four residents aged 65 years and above by 2030 in its high-rise and high-density urban environment. Research questions: To support urban seniors ageing in place and interdependence among senior residents and their informal caregivers, this study argues a community-based care model with bottom-up mutual help networks and asks how neighbourhood built-environment influences the formulation and facilitation of bottom-up mutual help networks in Singapore. Methods: Two public housing communities with different physical environment and rich age-friendly neighbourhood initiatives were chosen as the case studies. The categories, participants and places of bottom-up mutual help activities will be obtained via field observation, non-structural interviews of participants, service providers and managers of care facilities, and documents. Mapping and content analysis will be used to explore the influences of neighbourhood built-environment on the formulation and facilitation of bottom-up mutual help networks. Results and conclusions: The results showed that neighbourhood design, place programming, and place governance have a confluence on the bottom-up mutual help networks for senior residents. Significance: The outcomes of this study will provide fresh evidence for paradigm shifts of community-based care for the elderly and neighbourhood planning. In addition, the research findings will shed light on meaningful implications of urban planners and policy makers as they tackle with the issues arising from the ageing society.Keywords: Built environment, Mutual help, Neighbourhood, Senior residents, Singapore
Procedia PDF Downloads 1393710 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1633709 Investigation of Delivery of Triple Play Service in GE-PON Fiber to the Home Network
Authors: Anurag Sharma, Dinesh Kumar, Rahul Malhotra, Manoj Kumar
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 7363708 Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs
Authors: Dweepabiswa Bagchi, D. V. Senthilkumar
Abstract:
Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure.Keywords: increased ecosystem persistence, invasion on ecosystems, multiplex networks, non-trophic interactions
Procedia PDF Downloads 693707 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1373706 Construction of the Large Scale Biological Networks from Microarrays
Authors: Fadhl Alakwaa
Abstract:
One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.Keywords: gene regulatory network, biclustering, denoising, system biology
Procedia PDF Downloads 2403705 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1283704 A Location-based Authentication and Key Management Scheme for Border Surveillance Wireless Sensor Networks
Authors: Walid Abdallah, Noureddine Boudriga
Abstract:
Wireless sensor networks have shown their effectiveness in the deployment of many critical applications especially in the military domain. Border surveillance is one of these applications where a set of wireless sensors are deployed along a country border line to detect illegal intrusion attempts to the national territory and report this to a control center to undergo the necessary measures. Regarding its nature, this wireless sensor network can be the target of many security attacks trying to compromise its normal operation. Particularly, in this application the deployment and location of sensor nodes are of great importance for detecting and tracking intruders. This paper proposes a location-based authentication and key distribution mechanism to secure wireless sensor networks intended for border surveillance where the key establishment is performed using elliptic curve cryptography and identity-based public key scheme. In this scheme, the public key of each sensor node will be authenticated by keys that depend on its position in the monitored area. Before establishing a pairwise key between two nodes, each one of them must verify the neighborhood location of the other node using a message authentication code (MAC) calculated on the corresponding public key and keys derived from encrypted beacon messages broadcast by anchor nodes. We show that our proposed public key authentication and key distribution scheme is more resilient to node capture and node replication attacks than currently available schemes. Also, the achievement of the key distribution between nodes in our scheme generates less communication overhead and hence increases network performances.Keywords: wireless sensor networks, border surveillance, security, key distribution, location-based
Procedia PDF Downloads 6613703 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building
Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar
Abstract:
The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system
Procedia PDF Downloads 553702 Using Hyperspectral Camera and Deep Learning to Identify the Ripeness of Sugar Apples
Authors: Kuo-Dung Chiou, Yen-Xue Chen, Chia-Ying Chang
Abstract:
This study uses AI technology to establish an expert system and establish a fruit appearance database for pineapples and custard apples. It collects images based on appearance defects and fruit maturity. It uses deep learning to detect the location of the fruit and can detect the appearance of the fruit in real-time. Flaws and maturity. In addition, a hyperspectral camera was used to scan pineapples and custard apples, and the light reflection at different frequency bands was used to find the key frequency band for pectin softening in post-ripe fruits. Conducted a large number of multispectral image collection and data analysis to establish a database of Pineapple Custard Apple and Big Eyed Custard Apple, which includes a high-definition color image database, a hyperspectral database in the 377~1020 nm frequency band, and five frequency band images (450, 500, 670, 720, 800nm) multispectral database, which collects 4896 images and manually labeled ground truth; 26 hyperspectral pineapple custard apple fruits (520 images each); multispectral custard apple 168 fruits (5 images each). Using the color image database to train deep learning Yolo v4's pre-training network architecture and adding the training weights established by the fruit database, real-time detection performance is achieved, and the recognition rate reaches over 97.96%. We also used multispectral to take a large number of continuous shots and calculated the difference and average ratio of the fruit in the 670 and 720nm frequency bands. They all have the same trend. The value increases until maturity, and the value will decrease after maturity. Subsequently, the sub-bands will be added to analyze further the numerical analysis of sugar content and moisture, and the absolute value of maturity and the data curve of maturity will be found.Keywords: hyperspectral image, fruit firmness, deep learning, automatic detection, automatic measurement, intelligent labor saving
Procedia PDF Downloads 33701 Searching the Relationship among Components that Contribute to Interactive Plight and Educational Execution
Authors: Shri Krishna Mishra
Abstract:
In an educational context, technology can prompt interactive plight only when it is used in conjunction with interactive plight methods. This study, therefore, examines the relationships among components that contribute to higher levels of interactive plight and execution, such as interactive Plight methods, technology, intrinsic motivation and deep learning. 526 students participated in this study. With structural equation modelling, the authors test the conceptual model and identify satisfactory model fit. The results indicate that interactive Plight methods, technology and intrinsic motivation have significant relationship with interactive Plight; deep learning mediates the relationships of the other variables with Execution.Keywords: searching the relationship among components, contribute to interactive plight, educational execution, intrinsic motivation
Procedia PDF Downloads 4543700 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 993699 Interorganizational Relationships in the Brazilian Milk Production Chain
Authors: Marcelo T. Okano, Oduvaldo Vendrametto, Osmildo S. Santos, Marcelo E. Fernandes, Heide Landi
Abstract:
The literature on the interorganizational relationship between companies and organizations has increased in recent years, but there are still doubts about the various settings. The interorganizational networks are important in economic life, the fact facilitate the complex interdependence between transactional and cooperative organizations. A need identified in the literature is the lack of indicators to measure and identify the types of existing networks. The objective of this research is to examine the interorganizational relationships of two milk chains through indicators proposed by the theories of the four authors, characterizing them as network or not and what the benefits obtained by the chain organization. To achieve the objective of this work was carried out a survey of milk producers in two regions of the state of São Paulo. To collect the information needed for the analysis, exploratory research, qualitative nature was used. The research instrument of this work consists of a roadmap of semistructured interviews with open questions. Some of the answers were directed by the interviewer in the form of performance notes aimed at detecting the degree of importance, according to the perception of intensity to that regard. The results showed that interorganizational relationships are small and largely limited to the sale of milk or dairy cooperatives. These relationships relate only to trade relations between the owner and purchaser of milk. But when the producers are organized in associations or networks, interorganizational relationships and increase benefits for all participants in the network. The various visits and interviews in several dairy farms in the regions of São Pau-lo (indicated that the inter-relationships are small and largely limited to the sale of milk to cooperatives or dairy. These relationships refer only to trade relations between the owner and the purchaser of milk. But when the producers are organized in associations or networks, interorganizational relationships increase and bring benefits to all participants in the network.Keywords: interorganizational networks, dairy chain, interorganizational system, São Pau-lo
Procedia PDF Downloads 5813698 Progress in Combining Image Captioning and Visual Question Answering Tasks
Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima
Abstract:
Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.Keywords: image captioning, visual question answering, deep learning, natural language processing
Procedia PDF Downloads 743697 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 1193696 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System
Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio
Abstract:
A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel
Procedia PDF Downloads 6723695 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis
Procedia PDF Downloads 2923694 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1833693 Understanding and Improving Neural Network Weight Initialization
Authors: Diego Aguirre, Olac Fuentes
Abstract:
In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.Keywords: deep learning, image classification, supervised learning, weight initialization
Procedia PDF Downloads 1363692 Seamless Mobility in Heterogeneous Mobile Networks
Authors: Mohab Magdy Mostafa Mohamed
Abstract:
The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load
Procedia PDF Downloads 3543691 Rumour Containment Using Monitor Placement and Truth Propagation
Authors: Amrah Maryam
Abstract:
The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation
Procedia PDF Downloads 1623690 Using Pump as Turbine in Drinking Water Networks to Monitor and Control Water Processes Remotely
Authors: Sara Bahariderakhshan, Morteza Ahmadifar
Abstract:
Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. In the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PaT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and, therefore, more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore due to increasing the area of the network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PaT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.Keywords: new energies, pump as turbine, drinking water, distribution network, remote control equipments
Procedia PDF Downloads 4643689 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djemeleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force
Procedia PDF Downloads 4773688 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3523687 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 74