Search results for: correlation clustering
3627 A Longitudinal Study on the Relationship between Physical Activity and Gestational Weight Gain
Authors: Chia-Ching Sun, Li-Yin Chien, Chun-Ting Hsiao
Abstract:
Background: Appropriate gestation weight gain benefits pregnant women and their children; however, excessive weight gain could raise the risk of adverse health outcomes and chronicle diseases. Nevertheless, there is currently limited evidence on the effect of physical activities on pregnant women’s gestational weight gain. Purpose: This study aimed to explore the correlation between the level of physical activity and gestation weight gain during the second and third trimester of pregnancy. Methods: This longitudinal study enrolled 800 healthy pregnant women aged over 20 from six hospitals in northern Taiwan. Structured questionnaires were used to collect data twice for each participant during 14-27 and 28-40 weeks of gestation. Variables included demographic data, maternal health history, and lifestyle. The International Physical Activity Questionnaire-short form was used to measure the level of physical activity from walking and of moderate-intensity and vigorous-intensity before and during pregnancy. Weight recorded at prenatal checkups were used to calculate average weight gain in each trimester of pregnancy. T-tests, ANOVA, chi-squared tests, and multivariable logistic regression models were applied to determine the predicting factors for weight gain during the second and third trimester. Result: Participants who had achieved recommended physical activity level (150 minutes of moderate physical activity or 75 minutes of vigorous physical activity a week) before pregnancy (aOR=1.85, 95% CI=1.27-2.67) or who achieved recommended walking level (150 minutes a week) during the second trimester of pregnancy (aOR=1.43, 95% CI= 1.00-2.04) gained significantly more weight during the second trimester. Compared with those who did not reach recommended level of moderate-intensity physical activity (150 minutes a week), women who had reached that during the second trimester were more likely to be in the less than recommended weight gain group than in the recommended weight gain group (aOR=2.06, CI=1.06-4.00). However, there was no significant correlation between physical activity level and weight gain in the third trimester. Other predicting factors of excessive weight gain included education level which showed a negative correlation (aOR=0.38, CI=0.17-0.88), whereas overweight and obesity before pregnancy showed a positive correlation (OR=3.97, CI=1.23-12.78). Conclusions/implications for practice: Participants who had achieved recommended physical activity level before pregnancy significantly reduced exercise during pregnancy and gained excessive weight during the second trimester. However, women who engaged in the practice of physical activity as recommended could effectively control weight gain in the third trimester. Healthcare professionals could suggest that pregnant women who exercise maintain their pre-pregnancy level of physical activity, given activities requiring physical contact or causing falls are avoided. For those who do not exercise, health professionals should encourage them to gradually increase the level of physical activity. Health promotion strategies related to weight control and physical activity level achievement should be given to women before pregnancy.Keywords: pregnant woman, physical activity, gestation weight gain, obesity, overweight
Procedia PDF Downloads 1563626 Ethical Investment Instruments for Financial Sustainability
Authors: Sarkar Humayun Kabir
Abstract:
This paper aims to investigate whether ethical investment instruments could contribute to stability in financial markets. In order to address the main issue, the study investigates the stability of return in seven conventional and Islamic equity markets of Asia, Europe and North America and in five major commodity markets starting from 1996 to June 2012. In addition, the study examines the unconditional correlation between returns of the assets under review to investigate portfolio diversification benefits of investors. Applying relevant methods, the study finds that investors may enjoy sustainable returns from their portfolios by investing in ethical financial instruments such as Islamic equities. In addition, it should be noted that most of the commodities, gold in particular, are either low or negatively correlated with equity returns. These results suggest that investors would be better off by investing in portfolios combining Islamic equities and commodities in general. The sustainable returns of ethical investments has important implications for the investors and markets since these investments can provide stable returns while the investors can avoid production of goods and services which believes to be harmful for human and the society as a whole.Keywords: financial sustainability, ethical investment instruments, islamic equity, dynamic conditional correlation, conditional volatility
Procedia PDF Downloads 3093625 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins
Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan
Abstract:
Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.Keywords: cognition, generalized correlation coefficient, GWAS, twins
Procedia PDF Downloads 1243624 Vitamin A Status and Its Correlation with the Dietary Intake of Young Females of Lahore, Pakistan
Authors: Sarah Fatima, Ahmad A. Malik, Saima Sadaf
Abstract:
This study was conducted in order to assess the dietary record and vitamin A status of young females of Lahore. A total sample of 376 consisted of 16 – 20 years of unmarried college going females. Three main tools were adopted: questionnaire, 3-day food diary and serum retinol test. The anthropometric measurements showed that a total of 32.6% of the sample was underweight (BMI < 18.5) and 54.5% had a healthy weight (BMI 18.5 – 22.9). The average Vitamin A intake of the sample was 257.95 µg/day while the RDA for the selected age group was 700 µg/day. The mean energy intake of the adolescents was 1153.64 kcal/ day, whereas the Estimated Energy Requirement (EER) for this age group was 2368 kcal/day. The mean serum Vitamin A level was 24.81µg/dL. 69.6% of the sample was deficient in serum Vitamin A i.e. serum retinol < 24 µg/dL. 30.4% had serum retinol in normal limit (24 – 84 µg/dL) from which 25.3% lied in lower limit (24 – 44 µg/dL) and only 5.1% had serum retinol in 44 – 64 µg/dL range. A slightly negative correlation (r = - 0.21, 95% confidence interval) was found between dietary intake of Vitamin A and serum Vitamin A It was concluded that the dietary intake of major nutrients and vitamin A is not adequate in the selected group. This is also confirmed by the lower serum retinol levels. Hence, vitamin An intake and status are generally inadequate, and vitamin deficiency is prevalent in the unmarried young females of Lahore.Keywords: vitamin A, young Females, vitamin deficiency, Lahore
Procedia PDF Downloads 3143623 Impact of Working Capital Management Strategies on Firm's Value and Profitability
Authors: Jonghae Park, Daesung Kim
Abstract:
The impact of aggressive and conservative working capital‘s strategies on the value and profitability of the firms has been evaluated by applying the panel data regression analysis. The control variables used in the regression models are natural log of firm size, sales growth, and debt. We collected a panel of 13,988 companies listed on the Korea stock market covering the period 2000-2016. The major findings of this study are as follow: 1) We find a significant negative correlation between firm profitability and the number of days inventory (INV) and days accounts payable (AP). The firm’s profitability can also be improved by reducing the number of days of inventory and days accounts payable. 2) We also find a significant positive correlation between firm profitability and the number of days accounts receivable (AR) and cash ratios (CR). In other words, the cash is associated with high corporate profitability. 3) Tobin's analysis showed that only the number of days accounts receivable (AR) and cash ratios (CR) had a significant relationship. In conclusion, companies can increase profitability by reducing INV and increasing AP, but INV and AP did not affect corporate value. In particular, it is necessary to increase CA and decrease AR in order to increase Firm’s profitability and value.Keywords: working capital, working capital management, firm value, profitability
Procedia PDF Downloads 1893622 Using Nonhomogeneous Poisson Process with Compound Distribution to Price Catastrophe Options
Authors: Rong-Tsorng Wang
Abstract:
In this paper, we derive a pricing formula for catastrophe equity put options (or CatEPut) with non-homogeneous loss and approximated compound distributions. We assume that the loss claims arrival process is a nonhomogeneous Poisson process (NHPP) representing the clustering occurrences of loss claims, the size of loss claims is a sequence of independent and identically distributed random variables, and the accumulated loss distribution forms a compound distribution and is approximated by a heavy-tailed distribution. A numerical example is given to calibrate parameters, and we discuss how the value of CatEPut is affected by the changes of parameters in the pricing model we provided.Keywords: catastrophe equity put options, compound distributions, nonhomogeneous Poisson process, pricing model
Procedia PDF Downloads 1673621 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks
Authors: Wided Abidi, Tahar Ezzedine
Abstract:
Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency
Procedia PDF Downloads 3303620 Bruch’s Membrane Opening in High Myopia and Its Correlation with Axial Length
Authors: Sanjeeb Kumar Mishra, Aartee Jha, Madhu Thapa, Pragati Gautam
Abstract:
Introduction: High myopia has become a matter of global concern as it is a major risk factor for glaucoma. Various optic nerve head changes occur in high myopia over time. This might lead to difficulty in detecting pathologies associated with high myopia through conventional funduscopy examinations only. Bruch’s Membrane Opening (Area and Minimum Rim Width) is considered an anatomically more accurate and reliable landmark than the conventional clinical disc margin. Study Design: It was a hospital based cross-sectional and non-interventional type of study. Purpose: The purpose of our study was to measure Bruch’s Membrane Opening (area and Minimum Rim Width) in high myopic eyes and correlate it with axial length. Methods: A cross-sectional study was conducted at B.P Koirala Lions Center for Ophthalmic Studies, a tertiary-level eye center in Nepal. 80 eyes of 40 subjects (40% male and 60% female) aged 18-35 years with high myopia (Spherical Equivalent (SE) ≥ -6D) were taken as cases. Among them, RE of 39 and LE of 34 myopic subjects were included in the study. Spectral Domain-Optical Coherence Tomography of both the eyes of myopic patients was performed using Glaucoma Module Premiere Edition (GMPE) with Anatomic Positioning System (APS) to measure Bruch’s Membrane Opening (Area and Minimum Rim Width). Axial length in myopic patients was measured using Partial Coherence Interferometry (IOL Master). Results: Among 40 myopic subjects, 16 (40%) were males, whereas 24 (60%) were females. The mean age of myopic subjects was 24.64 ± 5.10 years, with minimum and maximum ages of 18 years and 35 years, respectively. The mean BMO area was 2.28 0.48 mm² in right eye and 2.15 0.59 mm² in left eye. BMO area in high myopic patient was significantly correlated with axial length. The correlation analysis of BMO area with axial length in RE and LE was found to be statistically significant at (r=0.465, p<0.003) and (r=0.374, p< 0.029), respectively. Likewise, the mean BMO-MRW was 325.69 ± 96µm in right eye and 339.20 ± 79.50µm in left eye. There was a significant correlation of BMO-MRW with axial length in both the eyes of myopic subjects. Moreover, a significant negative correlation of Inferior temporal, Nasal, and Inferior nasal quadrants (p<0.05) of BMO-MRW of right eye was found with axial length of right eye, whereas all the BMO-MRW quadrants of left eye were negatively correlated (p<0.05) with axial length in left eye. No significant differences were found between right eye and left eye on comparing means of refractive error, axial length, BMO area, and BMO-MRW. Conclusion: From this study, it can be concluded that BMO area enlarges in high myopia with an increase in axial length. Additionally, BMO-MRW thinning occurs along with the BMO enlargement and increases with axial length. There were no significant differences in refractive error, axial length, BMO area, and BMO-MRW between right eye and left eye.Keywords: high myopia, Bruch’s membrane opening, Bruch’s membrane opening minimum rim width, spectral domain optical coherence tomography
Procedia PDF Downloads 183619 Affective Factors on Citizens’ Participations in Plants Clinics in Iran
Authors: Mohammad Abedi Sh. Khodamoradi
Abstract:
The main aim of this research is to assess effective factors on citizens’ participations in plants clinics. Statistical society includes 153 citizens of region 15 of Tehran municipality, which in first six months of 2015 participated in educational classes held by Plant education center of Pardis and Pamchal Park located in region no.15. Sample size was calculated by Cochran formula and 10% was added to sample size in order to prevent probable problems and the final sample was n=124. Validity of questionnaire was calculated by professors of extension and education group in Oloom Tahghighat university of Tehran and reliability was 0.82 which was reported by editors. Data then was analyzed by SPSS software, and frequency table, comparing mean and correlation and regression also were assessed. Correlation was proved between age, type of activity and participation extent in plant clinics. Also participation would be increased in plant clinics due to positive and significant relation between educational factors and participation extent with improving educational factors. Moreover, there is inverse relation between literacy level and participation in level of 5%. Finally, regression analysis was used in order to predict each change which independent variable determines for dependent one.Keywords: plants clinics, participations, Tehran, Iran
Procedia PDF Downloads 2223618 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis
Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv
Abstract:
Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.Keywords: correlation analysis, hierarchical filtering, multisource data, network security
Procedia PDF Downloads 2013617 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 3783616 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 1083615 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 4183614 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3453613 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 1713612 Examination of the Main Behavioral Patterns of Male and Female Students in Islamic Azad University
Authors: Sobhan Sobhani
Abstract:
This study examined the behavioral patterns of student and their determinants according to the "symbolic interaction" sociological perspective in the form of 7 hypotheses. Behavioral patterns of students were classified in 8 categories: religious, scientific, political, artistic, sporting, national, parents and teachers. They were evaluated by student opinions by a five-point Likert rating scale. The statistical population included all male and female students of Islamic Azad University, Behabahan branch, among which 600 patients (268 females and 332 males) were selected randomly. The following statistical methods were used: frequency and percentage, mean, t-test, Pearson correlation coefficient and multi-way analysis of variance. The results obtained from statistical analysis showed that: 1-There is a significant difference between male and female students in terms of disposition to religious figures, artists, teachers and parents. 2-There is a significant difference between students of urban and rural areas in terms of assuming behavioral patterns of religious, political, scientific, artistic, national figures and teachers. 3-The most important criterion for selecting behavioral patterns of students is intellectual understanding with the pattern. 4-The most important factor influencing the behavioral patterns of male and female students is parents followed by friends. 5-Boys are affected by teachers, the Internet and satellite programs more than girls. Girls assume behavioral patterns from books more than boys. 6-There is a significant difference between students in human sciences, technical, medical and engineering disciplines in terms of selecting religious and political figures as behavioral patterns. 7-There is a significant difference between students belonging to different subcultures in terms of assuming behavioral patterns of religious, scientific and cultural figures. 8-Between the first and fourth year students in terms of selecting behavioral patterns, there is a significant difference only in selecting religious figures. 9-There is a significant negative correlation between the education level of parents and the selection of religious and political figures and teachers. 10-There is a significant negative correlation between family income and the selection of political and religious figures.Keywords: behavioral patterns, behavioral patterns, male and female students, Islamic Azad University
Procedia PDF Downloads 3653611 Developing a Framework for Open Source Software Adoption in a Higher Education Institution in Uganda. A case of Kyambogo University
Authors: Kafeero Frank
Abstract:
This study aimed at developing a frame work for open source software adoption in an institution of higher learning in Uganda, with the case of KIU as a study area. There were mainly four research questions based on; individual staff interaction with open source software forum, perceived FOSS characteristics, organizational characteristics and external characteristics as factors that affect open source software adoption. The researcher used causal-correlation research design to study effects of these variables on open source software adoption. A quantitative approach was used in this study with self-administered questionnaire on a purposively and randomly sampled sample of university ICT staff. Resultant data was analyzed using means, correlation coefficients and multivariate multiple regression analysis as statistical tools. The study reveals that individual staff interaction with open source software forum and perceived FOSS characteristics were the primary factors that significantly affect FOSS adoption while organizational and external factors were secondary with no significant effect but significant correlation to open source software adoption. It was concluded that for effective open source software adoption to occur there must be more effort on primary factors with subsequent reinforcement of secondary factors to fulfill the primary factors and adoption of open source software. Lastly recommendations were made in line with conclusions for coming up with Kyambogo University frame work for open source software adoption in institutions of higher learning. Areas of further research recommended include; Stakeholders’ analysis of open source software adoption in Uganda; Challenges and way forward. Evaluation of Kyambogo University frame work for open source software adoption in institutions of higher learning. Framework development for cloud computing adoption in Ugandan universities. Framework for FOSS development in Uganda IT industryKeywords: open source software., organisational characteristics, external characteristics, cloud computing adoption
Procedia PDF Downloads 723610 Effects of Internet Addiction on Students’ Academic Performance among Some Tertiary Institutions in Oyo State, Nigeria
Authors: Mujidat Lola Olugbode
Abstract:
This study investigates the effects of internet addiction on academic performance among students in some tertiary institutions in Oyo State, Nigeria. A descriptive survey research design was adopted for the study. Two research questions and two hypotheses were answered and tested. The population of the study comprised of all students in five tertiary institutions in Oyo State, Nigeria. Simple random sampling technique was used to select 2550 participants (respondents) from the institutions used for the study, this constituted the sample for the study. The instruments used for data collection was a self-constructed questionnaire on Internet Addiction and Students Academic Performance (IAASAP). The reliability coefficient of the instrument was 0.77. Data collected were analyzed using frequency and percentages, Pearson Product Moment Correlation coefficient (PPMCC) and t-test analysis. The results showed that the students in tertiary institutions in Oyo State were occasionally addicted to internet use. The study also revealed a positive correlation between internet addiction and academic performance. The findings also showed that there was significant difference in the internet addiction between male and female Students. Based on the above findings, the researchers recommended among others that government, educators, parents, counselors, teachers should help redirect the internet use toward academics to ensure greater academic performance.Keywords: internet, addiction, internet addiction, academic performance, tertiary institution, students
Procedia PDF Downloads 643609 Platooning Method Using Dynamic Correlation of Destination Vectors in Urban Areas
Authors: Yuya Tanigami, Naoaki Yamanaka, Satoru Okamoto
Abstract:
Economic losses due to delays in traffic congestion regarding urban transportation networks have become a more serious social problem as traffic volume increases. Platooning has recently been attracting attention from many researchers to alleviate traffic jams, especially on the highway. On highways, platooning can have positive effects, such as reducing inter-vehicular distance and reducing air resistance. However, the impacts of platooning on urban roads have not been addressed in detail since traffic lights may break the platoons. In this study, we propose a platooning method using L2 norm and cosine similarity to form a platoon with highly similar routes. Also, we investigate the sorting method within a platoon according to each vehicle’s straightness. Our proposed sorting platoon method, which uses two lanes, eliminates Head of Line Blocking at the intersection and improves throughput at intersections. This paper proposes a cyber-physical system (CPS) approach to collaborative urban platoon control. We conduct simulations using the traffic simulator SUMO and the road network, which imitates Manhattan Island. Results from the SUMO confirmed that our method shortens the average travel time by 10-20%. This paper shows the validity of forming a platoon based on destination vectors and sorting vehicles within a platoon.Keywords: CPS, platooning, connected car, vector correlation
Procedia PDF Downloads 763608 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia
Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono
Abstract:
Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length
Procedia PDF Downloads 2143607 Statistical Tools for SFRA Diagnosis in Power Transformers
Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava
Abstract:
For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)
Procedia PDF Downloads 6973606 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa
Authors: B. Mavhuru, N. S. Nethengwe
Abstract:
Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load
Procedia PDF Downloads 3073605 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service
Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong
Abstract:
Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation
Procedia PDF Downloads 3343604 Assessment of Obesity Parameters in Terms of Metabolic Age above and below Chronological Age in Adults
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Chronologic age (CA) of individuals is closely related to obesity and generally affects the magnitude of obesity parameters. On the other hand, close association between basal metabolic rate (BMR) and metabolic age (MA) is also a matter of concern. It is suggested that MA higher than CA is the indicator of the need to improve the metabolic rate. In this study, the aim was to assess some commonly used obesity parameters, such as obesity degree, visceral adiposity, BMR, BMR-to-weight ratio, in several groups with varying differences between MA and CA values. The study comprises adults, whose ages vary between 18 and 79 years. Four groups were constituted. Group 1, 2, 3 and 4 were composed of 55, 33, 76 and 47 adults, respectively. The individuals exhibiting -1, 0 and +1 for their MA-CA values were involved in Group 1, which was considered as the control group. Those, whose MA-CA values varying between -5 and -10 participated in Group 2. Those, whose MAs above their real ages were divided into two groups [Group 3 (MA-CA; from +5 to + 10) and Group 4 (MA-CA; from +11 to + 12)]. Body mass index (BMI) values were calculated. TANITA body composition monitor using bioelectrical impedance analysis technology was used to obtain values for obesity degree, visceral adiposity, BMR and BMR-to-weight ratio. The compiled data were evaluated statistically using a statistical package program; SPSS. Mean ± SD values were determined. Correlation analyses were performed. The statistical significance degree was accepted as p < 0.05. The increase in BMR was positively correlated with obesity degree. MAs and CAs of the groups were 39.9 ± 16.8 vs 39.9 ± 16.7 years for Group 1, 45.0 ± 15.3 vs 51.4 ± 15.7 years for Group 2, 47.2 ± 12.7 vs 40.0 ± 12.7 years for Group 3, and 53.6 ± 14.8 vs 42 ± 14.8 years for Group 4. BMI values of the groups were 24.3 ± 3.6 kg/m2, 23.2 ± 1.7 kg/m2, 30.3 ± 3.8 kg/m2, and 40.1 ± 5.1 kg/m2 for Group 1, 2, 3 and 4, respectively. Values obtained for BMR were 1599 ± 328 kcal in Group 1, 1463 ± 198 kcal in Group 2, 1652 ± 350 kcal in Group 3, and 1890 ± 360 kcal in Group 4. A correlation was observed between BMR and MA-CA values in Group 1. No correlation was detected in other groups. On the other hand, statistically significant correlations between MA-CA values and obesity degree, BMI as well as BMR/weight were found in Group 3 and in Group 4. It was concluded that upon consideration of these findings in terms of MA-CA values, BMR-to-weight ratio was found to be much more useful indicator of the severe increase in obesity development than BMR. Also, the lack of associations between MA and BMR as well as BMR-to-weight ratio emphasize the importance of consideration of MA-CA values rather than MA.Keywords: basal metabolic rate, basal metabolic rate-to-weight-ratio, chronologic age, metabolic age, obesity degree
Procedia PDF Downloads 973603 Orientational Pair Correlation Functions Modelling of the LiCl6H2O by the Hybrid Reverse Monte Carlo: Using an Environment Dependence Interaction Potential
Authors: Mohammed Habchi, Sidi Mohammed Mesli, Rafik Benallal, Mohammed Kotbi
Abstract:
On the basis of four partial correlation functions and some geometric constraints obtained from neutron scattering experiments, a Reverse Monte Carlo (RMC) simulation has been performed in the study of the aqueous electrolyte LiCl6H2O at the glassy state. The obtained 3-dimensional model allows computing pair radial and orientational distribution functions in order to explore the structural features of the system. Unrealistic features appeared in some coordination peaks. To remedy to this, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints derived from experiments. The energy of the system is calculated using an Environment Dependence Interaction Potential (EDIP). Ions effects is studied by comparing correlations between water molecules in the solution and in pure water at room temperature Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in orientational distribution curves.Keywords: LiCl6H2O, glassy state, RMC, HRMC
Procedia PDF Downloads 4713602 Investigation of Possible Precancerous Viral Markers in Dental Follicles of Asymptomatic Impacted Teeth
Authors: Serap Keskin Tunç, Cennet Neslihan Eroğlu, Sevinç Şahin, Selda Seçkin
Abstract:
It has been suggested that various viruses may play a role in the pathogenesis of cancerous oral lesions in the literature. The aim of this study was to investigate the presence of both possible precancerous viral markers (HPV, HHV8, HSV1, HSV2, and EBV), and p53 and Ki-67 in the dental follicles of asymptomatic impacted teeth. A hundred healthy volunteers, older than 18 years old, included in the study. Dental follicles of extracted impacted teeth were excised and fixated in 10% formaldehyde. Histopathological and immunohistochemical examinations using HPV (containing HPV 8 and HPV 11), p16 (containing HPV 16), HHV8, HSV1, HSV2, EBV, p53 and Ki-67 antibodies were carried out. Also, the immunohistochemical results were correlated with the clinicopathological feature by Chi-square test statistically No dysplasia or neoplasm was observed. 62% of the cases were positive for p16, 32% were positive for EBV, 26% were positive for HSV1, immunohistochemically. All cases were immunonegative for HPV, HSV2, and HHV8. There was statistically significant correlation between overexpression of p53 with both EBV and p16 positivity (p<0.05). Direct correlation between higher expression of Ki-67 between EBV immunopositivity was detected (p<0.05). Thus, these viruses may be suggested to show trophism to the dental follicles acting as a reservoir. In conclusion, all dental follicles of extracted impacted teeth should be examined histopathologically in order to detect and prevent possible viral oncogenesis.Keywords: dental follicles, Ki67, p53, precancerous markers viral markers
Procedia PDF Downloads 2903601 The Dynamic Metadata Schema in Neutron and Photon Communities: A Case Study of X-Ray Photon Correlation Spectroscopy
Authors: Amir Tosson, Mohammad Reza, Christian Gutt
Abstract:
Metadata stands at the forefront of advancing data management practices within research communities, with particular significance in the realms of neutron and photon scattering. This paper introduces a groundbreaking approach—dynamic metadata schema—within the context of X-ray Photon Correlation Spectroscopy (XPCS). XPCS, a potent technique unravelling nanoscale dynamic processes, serves as an illustrative use case to demonstrate how dynamic metadata can revolutionize data acquisition, sharing, and analysis workflows. This paper explores the challenges encountered by the neutron and photon communities in navigating intricate data landscapes and highlights the prowess of dynamic metadata in addressing these hurdles. Our proposed approach empowers researchers to tailor metadata definitions to the evolving demands of experiments, thereby facilitating streamlined data integration, traceability, and collaborative exploration. Through tangible examples from the XPCS domain, we showcase how embracing dynamic metadata standards bestows advantages, enhancing data reproducibility, interoperability, and the diffusion of knowledge. Ultimately, this paper underscores the transformative potential of dynamic metadata, heralding a paradigm shift in data management within the neutron and photon research communities.Keywords: metadata, FAIR, data analysis, XPCS, IoT
Procedia PDF Downloads 623600 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 4433599 Application of Stochastic Models to Annual Extreme Streamflow Data
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.Keywords: stochastic models, ARIMA, extreme streamflow, Karkheh river
Procedia PDF Downloads 1483598 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error
Procedia PDF Downloads 322