Search results for: control over nursing practice
14194 SPBAC: A Semantic Policy-Based Access Control for Database Query
Authors: Aaron Zhang, Alimire Kahaer, Gerald Weber, Nalin Arachchilage
Abstract:
Access control is an essential safeguard for the security of enterprise data, which controls users’ access to information resources and ensures the confidentiality and integrity of information resources [1]. Research shows that the more common types of access control now have shortcomings [2]. In this direction, to improve the existing access control, we have studied the current technologies in the field of data security, deeply investigated the previous data access control policies and their problems, identified the existing deficiencies, and proposed a new extension structure of SPBAC. SPBAC extension proposed in this paper aims to combine Policy-Based Access Control (PBAC) with semantics to provide logically connected, real-time data access functionality by establishing associations between enterprise data through semantics. Our design combines policies with linked data through semantics to create a "Semantic link" so that access control is no longer per-database and determines that users in each role should be granted access based on the instance policy, and improves the SPBAC implementation by constructing policies and defined attributes through the XACML specification, which is designed to extend on the original XACML model. While providing relevant design solutions, this paper hopes to continue to study the feasibility and subsequent implementation of related work at a later stage.Keywords: access control, semantic policy-based access control, semantic link, access control model, instance policy, XACML
Procedia PDF Downloads 9214193 Autonomous Control of Ultrasonic Transducer Drive System
Authors: Dong-Keun Jeong, Jong-Hyun Kim, Woon-Ha Yoon, Hee-Je Kim
Abstract:
In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system.Keywords: ultrasonic transducer drive system, impedance change, sensorless, autonomous control algorithm
Procedia PDF Downloads 36014192 Design and Implementation of Control System in Underwater Glider of Ganeshblue
Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono
Abstract:
Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.Keywords: control system, PID, underwater glider, marine robotics
Procedia PDF Downloads 37414191 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings
Authors: Annette Cosgrove
Abstract:
The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.Keywords: TEL, DTL, digital teaching, digital assessment
Procedia PDF Downloads 7014190 Investigation of the GFR2400 Reactivity Control System
Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban
Abstract:
The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity
Procedia PDF Downloads 43714189 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems
Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems
Procedia PDF Downloads 61114188 Students' Perspectives on Quality of Course Evaluation Practices and Feedbacks in Eritrea
Authors: Ermias Melake Tesfay
Abstract:
The importance of evaluation practice and feedback to student advancement and retention has gained importance in the literature over the past ten years. So many issues and cases have been raised about the quality and types of evaluation carried out in higher education and the quality and quantity of student feedback. The aim of this study was to explore the students’ perspectives on the quality of course evaluation practice and feedback in College of Education and College of Science. The study used both quantitative and qualitative methods to collect data. Data were collected from third-year and fourth-year students of 13 departments in the College of Education and College of Science in Eritrea. A modified Service Performance (SERVPERF) questionnaire and focus group discussions were used to collect the data. The sample population comprised of 135 third-year and fourth-year students’ from both Colleges. A questionnaire using a 5 point Likert-scale was administered to all respondents whilst two focus group discussions were conducted. Findings from survey data and focus group discussions showed that the majority of students hold a positive perception of the quality of course evaluation practice but had a negative perception of methods of awarding grades and administrators’ role in listening to the students complain about the course. Furthermore, the analysis from the questionnaire showed that there is no statistically significant difference between third-year and fourth-year students, College of Education and College of Science and male and female students on the quality of course evaluation practice and feedback. The study recommends that colleges improve the quality of fairness and feedback during course assessment.Keywords: evaluation, feedback, quality, students' perception
Procedia PDF Downloads 15714187 Application of Hyperbinomial Distribution in Developing a Modified p-Chart
Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman
Abstract:
Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution
Procedia PDF Downloads 27914186 Study on Planning of Smart GRID Using Landscape Ecology
Authors: Sunglim Lee, Susumu Fujii, Koji Okamura
Abstract:
Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.Keywords: landscape ecology, IT, smart grid, aerial photograph, simulation
Procedia PDF Downloads 44414185 Developing Pedagogy for Argumentation and Teacher Agency: An Educational Design Study in the UK
Authors: Zeynep Guler
Abstract:
Argumentation and the production of scientific arguments are essential components that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. Incorporating argumentation into science classrooms is challenging and can be a long-term process for both students and teachers. Students have difficulty in engaging tasks that require them to craft arguments, evaluate them to seek weaknesses, and revise them. Teachers also struggle with facilitating argumentation when they have underdeveloped science practices, underdeveloped pedagogical knowledge for argumentation science teaching, or underdeveloped teaching practice with argumentation (or a combination of all three). Thus, there is a need to support teachers in developing pedagogy for science teaching as argumentation, planning and implementing teaching practice for facilitating argumentation and also in becoming more agentic in this regards. Looking specifically at the experience of agency within education, it is arguable that agency is necessary for teachers’ renegotiation of professional purposes and practices in the light of changing educational practices. This study investigated how science teachers develop pedagogy for argumentation both individually and with their colleagues and also how teachers become more agentic (or not) through the active engagement of their contexts-for-action that refer to this as an ecological understanding of agency in order to positively influence or change their practice and their students' engagement with argumentation over two academic years. Through educational design study, this study conducted with three secondary science teachers (key stage 3-year 7 students aged 11-12) in the UK to find out if similar or different patterns of developing pedagogy for argumentation and of becoming more agentic emerge as they engage in planning and implementing a cycle of activities during the practice of teaching science with argumentation. Data from video and audio-recording of classroom practice and open-ended interviews with the science teachers were analysed using content analysis. The findings indicated that all the science teachers perceived strong agency in their opportunities to develop and apply pedagogical practices within the classroom. The teachers were pro-actively shaping their practices and classroom contexts in ways that were over and above the amendments to their pedagogy. They demonstrated some outcomes in developing pedagogy for argumentation and becoming more agentic in their teaching in this regards as a result of the collaboration with their colleagues and researcher; some appeared more agentic than others. The role of the collaboration between their colleagues was seen crucial for the teachers’ practice in the schools: close collaboration and support from other teachers in planning and implementing new educational innovations were seen as crucial for the development of pedagogy and becoming more agentic in practice. They needed to understand the importance of scientific argumentation but also understand how it can be planned and integrated into classroom practice. They also perceived constraint emerged from their lack of competence and knowledge in posing appropriate questions to help the students engage in argumentation, providing support for the students' construction of oral and written arguments.Keywords: argumentation, teacher professional development, teacher agency, students' construction of argument
Procedia PDF Downloads 13314184 Chaotic Control, Masking and Secure Communication Approach of Supply Chain Attractor
Authors: Unal Atakan Kahraman, Yilmaz Uyaroğlu
Abstract:
The chaotic signals generated by chaotic systems have some properties such as randomness, complexity and sensitive dependence on initial conditions, which make them particularly suitable for secure communications. Since the 1990s, the problem of secure communication, based on chaos synchronization, has been thoroughly investigated and many methods, for instance, robust and adaptive control approaches, have been proposed to realize the chaos synchronization. In this paper, an improved secure communication model is proposed based on control of supply chain management system. Control and masking communication simulation results are used to visualize the effectiveness of chaotic supply chain system also performed on the application of secure communication to the chaotic system. So, we discover the secure phenomenon of chaos-amplification in supply chain systemKeywords: chaotic analyze, control, secure communication, supply chain attractor
Procedia PDF Downloads 51714183 Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential
Authors: Mohamed Abdel-Monem, Gamal Sowilam, Omar Hegazy
Abstract:
This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment.Keywords: electric vehicle, energy saving, multi-motor, electric differential, simulation and control
Procedia PDF Downloads 35114182 PEA Design of the Direct Control for Training Motor Drives
Authors: Abdulatif Abdulsalam Mohamed Shaban
Abstract:
This paper states that the art of Procedure Entry Array (PEA) plan with a focus on control system applications. This paper begins with an impression of PEA technology development, followed by an arrangement of design technologies, and the use of programmable description languages and system-level design tools. They allow a practical approach based on a unique model for complete engineering electronics systems. There are three main design rules are implemented in the system. These are algorithm based fine-tuning, modularity, and the control act and the architectural constraints. An overview of contributions and limits of PEAs is also given, followed by a short survey of PEA-based gifted controllers for recent engineering systems. Finally, two complete and timely case studies are presented to illustrate the benefits of a PEA implementation when using the proposed system modelling and devise attitude. These consist of the direct control for training motor drives and the control of a diesel-driven stand-alone generator with the help of logical design.Keywords: control (DC), engineering electronics systems, training motor drives, procedure entry array
Procedia PDF Downloads 51414181 Optimization Design of Single Phase Inverter Connected to the Grid
Authors: Linda Hassaine, Abdelhamid Mraoui, Mohamed Rida Bengourina
Abstract:
In grid-connected photovoltaic systems, significant improvements can be carried out in the design and implementation of inverters: reduction of harmonic distortion, elimination of the DC component injected into the grid and the proposed control. This paper proposes a control strategy based on PWM switching patterns for an inverter for the photovoltaic system connected to the grid in order to control the injected current. The current injected must be sinusoidal with reduced harmonic distortion. An additional filter is designed to reduce high-order harmonics on the output side. This strategy exhibits the advantages: Simplicity, reduction of harmonics, the size of the line filter, reduction of the memory requirements and power calculation for the control.Keywords: control, inverters, LCL filter, grid-connected photovoltaic system
Procedia PDF Downloads 32514180 Iterative Design Process for Development and Virtual Commissioning of Plant Control Software
Authors: Thorsten Prante, Robert Schöch, Ruth Fleisch, Vaheh Khachatouri, Alexander Walch
Abstract:
The development of industrial plant control software is a complex and often very expensive task. One of the core problems is that a lot of the implementation and adaptation work can only be done after the plant hardware has been installed. In this paper, we present our approach to virtually developing and validating plant-level control software of production plants. This way, plant control software can be virtually commissioned before actual ramp-up of a plant, reducing actual commissioning costs and time. Technically, this is achieved by linking the actual plant-wide process control software (often called plant server) and an elaborate virtual plant model together to form an emulation system. Method-wise, we are suggesting a four-step iterative process with well-defined increments and time frame. Our work is based on practical experiences from planning to commissioning and start-up of several cut-to-size plants.Keywords: iterative system design, virtual plant engineering, plant control software, simulation and emulation, virtual commissioning
Procedia PDF Downloads 48814179 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes
Authors: Lucas Paganin, Viliam Makis
Abstract:
With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart
Procedia PDF Downloads 9114178 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices
Authors: Zhuang Yiwen
Abstract:
The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms
Procedia PDF Downloads 7714177 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles
Authors: Mahmoud Said Jneid, Péter Harth
Abstract:
EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control
Procedia PDF Downloads 8314176 Comprehensive Strategy for Healthy City from Local Practice Networking among Citizens, Industry, University and Municipality
Authors: Yuki Hara
Abstract:
Healthy assets are recognized as important for all people in the world through experiencing COVID-19. Each part of life and work is important to be changed against the preceding wide-spreading of COVID-19. Furthermore, it is necessary to innovate the whole structure of a city upon the sum of the parts. This study aims at creating a comprehensive strategy from a small practice of making healthier lives with collaborating local actors for a city. This paper employs action research as the research framework. The core practice is the 'Ken’iku Festival' at Ken’iku Festival Committee. The field locates the urban-rural fringe in the northwest part of Fujisawa city, Kanagawa prefecture, Japan. The data is collected through the author's practices for three years from the observations and interviews at meetings and discussions among stakeholders, texts in municipal reports, books, and movies, 3 questionnaires for customers and stakeholders at the Ken’iku Festival. These data are analysed by qualitative methods. The results show that couples in their 40s with children and couples or friends over the 70s are at the heart of promoting healthy lifestyles. In contrast, 40% of the visitors at the festival are the people who have no idea or no interest in healthier actions, which the committee has to suggest healthy activities through more pleasing services. The committee could organize staff and local actors as the core parties involved through gradually expanding its tasks relating to the local practices. This private sectoral activity from health promotion is covering a part of the whole-city planning of Fujisawa municipality by including many people over organisations into one community. This paper concludes from local practice networking through the festival that a comprehensive strategy for a healthy city is both a practical approach easily applied to each partner and one of the holistic services.Keywords: communal practice network, healthy cities, health & development, health promotion, with and after COVID-19
Procedia PDF Downloads 13014175 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 32014174 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control
Authors: R. S. Sheu, H. Usman, M. S. Lawal
Abstract:
Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control
Procedia PDF Downloads 39714173 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial
Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu
Abstract:
The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease
Procedia PDF Downloads 18014172 Power, Values, Rules and Leader Decision Making: A Discourse Perspective
Authors: Cathryn Robinson, Bernard McKenna, David Rooney
Abstract:
This paper argues that the application of values-based leadership increasingly challenges leaders in rules-based organisations, particularly in bureaucratic organisations such as the military, public service, police, and emergency services. Leaders are grappling to reconcile how to enact values-based leadership and decision-making when they are bound by rules, policies, and procedures. This interpretive study used a multi-faceted vignette (critical incident) as the basis of an interview with air force officers at three levels: executive, senior, and junior. In this way, practice is forced to intersect with discourse. The findings revealed a shared set of discourse themes (legal; rules; safety and risk; operational practice/theatre discourses), but also clear dialectical tensions. These tensions were evident in executive officers and senior leaders emphasizing rules and information themes, whereas junior officers emphasized decision making, collateral, and situation. These findings reveal discourse and practice incommensurability that could have grave implications in the conduct of war.Keywords: critical incident, discourse analysis, rules-based, values-based
Procedia PDF Downloads 18114171 Infusion Pump Historical Development, Measurement and Parts of Infusion Pump
Authors: Samuel Asrat
Abstract:
Infusion pumps have become indispensable tools in modern healthcare, allowing for precise and controlled delivery of fluids, medications, and nutrients to patients. This paper provides an overview of the historical development, measurement, and parts of infusion pumps. The historical development of infusion pumps can be traced back to the early 1960s when the first rudimentary models were introduced. These early pumps were large, cumbersome, and often unreliable. However, advancements in technology and engineering over the years have led to the development of smaller, more accurate, and user-friendly infusion pumps. Measurement of infusion pumps involves assessing various parameters such as flow rate, volume delivered, and infusion duration. Flow rate, typically measured in milliliters per hour (mL/hr), is a critical parameter that determines the rate at which fluids or medications are delivered to the patient. Accurate measurement of flow rate is essential to ensure the proper administration of therapy and prevent adverse effects. Infusion pumps consist of several key parts, including the pump mechanism, fluid reservoir, tubing, and control interface. The pump mechanism is responsible for generating the necessary pressure to push fluids through the tubing and into the patient's bloodstream. The fluid reservoir holds the medication or solution to be infused, while the tubing serves as the conduit through which the fluid travels from the reservoir to the patient. The control interface allows healthcare providers to program and adjust the infusion parameters, such as flow rate and volume. In conclusion, infusion pumps have evolved significantly since their inception, offering healthcare providers unprecedented control and precision in delivering fluids and medications to patients. Understanding the historical development, measurement, and parts of infusion pumps is essential for ensuring their safe and effective use in clinical practice. Procedia PDF Downloads 6714170 Evaluation of Green Infrastructure with Different Woody Plants Practice and Benefit Using the Stormwater Management-HYDRUS Model
Authors: Bei Zhang, Zhaoxin Zhang, Lidong Zhao
Abstract:
Green infrastructures (GIs) for rainwater management can directly meet the multiple purposes of urban greening and non-point source pollution control. To reveal the overall layout law of GIs dominated by typical woody plants and their impact on urban environmental effects, we constructed a HYDRUS-1D and Stormwater management (SWMM) coupling model to simulate the response of typical root woody plant planting methods on urban hydrological. The results showed that the coupling model had high adaptability to the simulation of urban surface runoff control effect under different woody plant planting methods (NSE ≥0.64 and R² ≥ 0.71). The regulation effect on surface runoff showed that the average runoff reduction rate of GIs increased from 60 % to 71 % with the increase of planting area (5% to 25%) under the design rainfall event of the 2-year recurrence interval. Sophora japonica with tap roots was slightly higher than that of without plants (control) and Malus baccata (M. baccata) with fibrous roots. The comprehensive benefit evaluation system of rainwater utilization technology was constructed by using an analytic hierarchy process. The coupling model was used to evaluate the comprehensive benefits of woody plants with different planting areas in the study area in terms of environment, economy, and society. The comprehensive benefit value of planting 15% M. baccata was the highest, which was the first choice for the planting of woody plants in the study area. This study can provide a scientific basis for the decision-making of green facility layouts of woody plants.Keywords: green infrastructure, comprehensive benefits, runoff regulation, woody plant layout, coupling model
Procedia PDF Downloads 6914169 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses
Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang
Abstract:
Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19
Procedia PDF Downloads 18214168 PWM Based Control of Dstatcom for Voltage Sag, Swell Mitigation in Distribution Systems
Authors: A. Assif
Abstract:
This paper presents the modeling of a prototype distribution static compensator (D-STATCOM) for voltage sag and swell mitigation in an unbalanced distribution system. Here the concept that an inverter can be used as generalized impedance converter to realize either inductive or capacitive reactance has been used to mitigate power quality issues of distribution networks. The D-STATCOM is here supposed to replace the widely used StaticVar Compensator (SVC). The scheme is based on the Voltage Source Converter (VSC) principle. In this model PWM based control scheme has been implemented to control the electronic valves of VSC. Phase shift control Algorithm method is used for converter control. The D-STATCOM injects a current into the system to mitigate the voltage sags. In this paper the modeling of D¬STATCOM has been designed using MATLAB SIMULINIC. Accordingly, simulations are first carried out to illustrate the use of D-STATCOM in mitigating voltage sag in a distribution system. Simulation results prove that the D-STATCOM is capable of mitigating voltage sag as well as improving power quality of a system.Keywords: D-STATCOM, voltage sag, voltage source converter (VSC), phase shift control
Procedia PDF Downloads 34314167 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control
Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi
Abstract:
In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.Keywords: impedance control, control system, robots, interaction
Procedia PDF Downloads 43014166 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter
Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed
Abstract:
Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control
Procedia PDF Downloads 73814165 Application of Matrix Converter for the Power Control of a DFIG-Based Wind Turbine
Authors: E. Bounadja, M. O. Mahmoudi, A. Djahbar, Z. Boudjema
Abstract:
This paper presents a control approach of the doubly fed induction generator (DFIG) in conjunction with a direct AC-AC matrix converter used in generating mode. This device is intended to be implemented in a variable speed wind energy conversion system connected to the grid. Firstly, we developed a model of matrix converter, controlled by the Venturini modulation technique. In order to control the power exchanged between the stator of the DFIG and the grid, a control law is synthesized using a high order sliding mode controller. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 2-MW wind turbine driven a DFIG using the Matlab/Simulink.Keywords: doubly fed induction generator (DFIG), matrix converter, high-order sliding mode controller, wind energy
Procedia PDF Downloads 523