Search results for: activated sludge model (ASM3h)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17293

Search results for: activated sludge model (ASM3h)

16393 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 101
16392 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 189
16391 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects

Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid

Abstract:

Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.

Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE

Procedia PDF Downloads 344
16390 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers

Authors: Yungtai Lo

Abstract:

The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.

Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model

Procedia PDF Downloads 270
16389 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam

Authors: T. M. Ismail, M. A. El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.

Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia PDF Downloads 382
16388 Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill

Authors: Dheyaa Wajid Abbood, Hanan Hussien Abood

Abstract:

Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure.

Keywords: stepped cascade weir, aeration, multiphase flow model, ansys

Procedia PDF Downloads 322
16387 Developing an Integrated Seismic Risk Model for Existing Buildings in Northern Algeria

Authors: R. Monteiro, A. Abarca

Abstract:

Large scale seismic risk assessment has become increasingly popular to evaluate the physical vulnerability of a given region to seismic events, by putting together hazard, exposure and vulnerability components. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), explains the steps and expected results for the development of an integrated seismic risk model for assessment of the vulnerability of residential buildings in Northern Algeria. For this purpose, the model foresees the consideration of an updated seismic hazard model, as well as ad-hoc exposure and physical vulnerability models for local residential buildings. The first results of this endeavor, such as the hazard model and a specific taxonomy to be used for the exposure and fragility components of the model are presented, using as starting point the province of Blida, in Algeria. Specific remarks and conclusions regarding the characteristics of the Northern Algerian in-built are then made based on these results.

Keywords: Northern Algeria, risk, seismic hazard, vulnerability

Procedia PDF Downloads 188
16386 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 186
16385 Wind Wave Modeling Using MIKE 21 SW Spectral Model

Authors: Pouya Molana, Zeinab Alimohammadi

Abstract:

Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.

Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio

Procedia PDF Downloads 385
16384 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market

Authors: Sibel Celik, Hüseyin Ergin

Abstract:

The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.

Keywords: volatility, GARCH model, realized volatility, high frequency data

Procedia PDF Downloads 474
16383 Application of the Tripartite Model to the Link between Non-Suicidal Self-Injury and Suicidal Risk

Authors: Ashley Wei-Ting Wang, Wen-Yau Hsu

Abstract:

Objectives: The current study applies and expands the Tripartite Model to elaborate the link between non-suicidal self-injury (NSSI) and suicidal behavior. We propose a structural model of NSSI and suicidal risk, in which negative affect (NA) predicts both anxiety and depression, positive affect (PA) predicts depression only, anxiety is linked to NSSI, and depression is linked to suicidal risk. Method: Four hundreds and eighty seven undergraduates participated. Data were collected by administering self-report questionnaires. We performed hierarchical regression and structural equation modeling to test the proposed structural model. Results: The results largely support the proposed structural model, with one exception: anxiety was strongly associated with NSSI and to a lesser extent with suicidal risk. Conclusions: We conclude that the co-occurrence of NSSI and suicidal risk is due to NA and anxiety, and suicidal risk can be differentiated by depression. Further theoretical and practical implications are discussed.

Keywords: non-suicidal self-injury, suicidal risk, anxiety, depression, the tripartite model, hierarchical relationship

Procedia PDF Downloads 452
16382 Valuation of Caps and Floors in a LIBOR Market Model with Markov Jump Risks

Authors: Shih-Kuei Lin

Abstract:

The characterization of the arbitrage-free dynamics of interest rates is developed in this study under the presence of Markov jump risks, when the term structure of the interest rates is modeled through simple forward rates. We consider Markov jump risks by allowing randomness in jump sizes, independence between jump sizes and jump times. The Markov jump diffusion model is used to capture empirical phenomena and to accurately describe interest jump risks in a financial market. We derive the arbitrage-free model of simple forward rates under the spot measure. Moreover, the analytical pricing formulas for a cap and a floor are derived under the forward measure when the jump size follows a lognormal distribution. In our empirical analysis, we find that the LIBOR market model with Markov jump risk better accounts for changes from/to different states and different rates.

Keywords: arbitrage-free, cap and floor, Markov jump diffusion model, simple forward rate model, volatility smile, EM algorithm

Procedia PDF Downloads 407
16381 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models

Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi

Abstract:

In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.

Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function

Procedia PDF Downloads 546
16380 Feasibility of Applying a Hydrodynamic Cavitation Generator as a Method for Intensification of Methane Fermentation Process of Virginia Fanpetals (Sida hermaphrodita) Biomass

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The anaerobic degradation of substrates is limited especially by the rate and effectiveness of the first (hydrolytic) stage of fermentation. This stage may be intensified through pre-treatment of substrate aimed at disintegration of the solid phase and destruction of substrate tissues and cells. The most frequently applied criterion of disintegration outcomes evaluation is the increase in biogas recovery owing to the possibility of its use for energetic purposes and, simultaneously, recovery of input energy consumed for the pre-treatment of substrate before fermentation. Hydrodynamic cavitation is one of the methods for organic substrate disintegration that has a high implementation potential. Cavitation is explained as the phenomenon of the formation of discontinuity cavities filled with vapor or gas in a liquid induced by pressure drop to the critical value. It is induced by a varying field of pressures. A void needs to occur in the flow in which the pressure first drops to the value close to the pressure of saturated vapor and then increases. The process of cavitation conducted under controlled conditions was found to significantly improve the effectiveness of anaerobic conversion of organic substrates having various characteristics. This phenomenon allows effective damage and disintegration of cellular and tissue structures. Disintegration of structures and release of organic compounds to the dissolved phase has a direct effect on the intensification of biogas production in the process of anaerobic fermentation, on reduced dry matter content in the post-fermentation sludge as well as a high degree of its hygienization and its increased susceptibility to dehydration. A device the efficiency of which was confirmed both in laboratory conditions and in systems operating in the technical scale is a hydrodynamic generator of cavitation. Cavitators, agitators and emulsifiers constructed and tested worldwide so far have been characterized by low efficiency and high energy demand. Many of them proved effective under laboratory conditions but failed under industrial ones. The only task successfully realized by these appliances and utilized on a wider scale is the heating of liquids. For this reason, their usability was limited to the function of heating installations. Design of the presented cavitation generator allows achieving satisfactory energy efficiency and enables its use under industrial conditions in depolymerization processes of biomass with various characteristics. Investigations conducted on the laboratory and industrial scale confirmed the effectiveness of applying cavitation in the process of biomass destruction. The use of the cavitation generator in laboratory studies for disintegration of sewage sludge allowed increasing biogas production by ca. 30% and shortening the treatment process by ca. 20 - 25%. The shortening of the technological process and increase of wastewater treatment plant effectiveness may delay investments aimed at increasing system output. The use of a mechanical cavitator and application of repeated cavitation process (4-6 times) enables significant acceleration of the biogassing process. In addition, mechanical cavitation accelerates increases in COD and VFA levels.

Keywords: hydrodynamic cavitation, pretreatment, biomass, methane fermentation, Virginia fanpetals

Procedia PDF Downloads 418
16379 Successful Immobilization of Alcohol Dehydrogenase on Natural and Synthetic Support and Its Reaction on Ethanol

Authors: Hiral D. Trivedi, Dinesh S. Patel, Sachin P. Shukla

Abstract:

We have immobilized alcohol dehydrogenase on k-carrageenan, which is a natural polysaccharide obtained from seaweeds by entrapment and on copolymer of acrylamide and 2-hydroxy ethylmethaacrylate by covalent coupling. We have optimized all the immobilization parameters and also carried the comparison studies of both. In case of copolymer of acrylamide and 2-hydroxy ethylmethaacrylate, we have activated both the amino and hydroxyl group individually and simultaneously using different activating agents and obtained some interesting results. We have found that covalently bound enzyme was found to be better under all tested conditions. The reaction on ethanol was carried out using these immobilized systems.

Keywords: alcohol dehydrogenase, acrylamide-co-2-hydroxy ethylmethaacrylate, ethanol, k-carrageenan

Procedia PDF Downloads 126
16378 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 112
16377 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software

Procedia PDF Downloads 314
16376 Adsoption Tests of Two Industrial Dyes by Metallic Hydroxyds

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: Metallic Hydroxydes, industrial dyes, purification, lagunage

Procedia PDF Downloads 448
16375 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 234
16374 A Basic Metric Model: Foundation for an Evidence-Based HRM System

Authors: K. M. Anusha, R. Krishnaveni

Abstract:

Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.

Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector

Procedia PDF Downloads 389
16373 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection

Authors: Nikolaos Reppas, Yilin Gui

Abstract:

A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.

Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model

Procedia PDF Downloads 159
16372 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique

Authors: N. Guo, C. Xu, Z. C. Yang

Abstract:

In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.

Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search

Procedia PDF Downloads 140
16371 New Dynamic Constitutive Model for OFHC Copper Film

Authors: Jin Sung Kim, Hoon Huh

Abstract:

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

Keywords: rate dependent material properties, dynamic constitutive model, OFHC copper film, strain rate

Procedia PDF Downloads 472
16370 Improving the Quantification Model of Internal Control Impact on Banking Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.

Keywords: risk, control, banking, FMECA, criticality

Procedia PDF Downloads 311
16369 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile

Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno

Abstract:

In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.

Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control

Procedia PDF Downloads 559
16368 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose

Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani

Abstract:

Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.

Keywords: Gliclazide, hypromellose, drug release, modified-release tablet, mathematical model

Procedia PDF Downloads 205
16367 Categorization of Biosolids, a Vital Biological Resource for Sustainable Agriculture

Authors: Susmita Sharma, Pankaj Pathak

Abstract:

Biosolids are by-products of municipal and industrial wastewater treatment process. The generation of the biosolids is increasing at an alarming rate due to the implementation of strict environmental legislation to improve the quality of discharges from wastewater treatment plant. As such, proper management and safe disposal of sewage sludge have become a worldwide topic of research. Biosolids, rich in organic matter and essential micro and macronutrients; can be used as a soil conditioner, to cut fertilizer costs and create favorable conditions for vegetation. However, it also contains pathogens and heavy metals which are undesirable as they are harmful to both humans and the environment. Therefore, for safe utilization of biosolids for land application purposes, categorization of the contaminant and pathogen is mandatory. In this context, biosolids collected from a wastewater treatment plant in Maharashtra are utilized to determine its physical, chemical and microbiological attributes. This study would ascertain, if the use of these materials from the specific site, are suitable for agriculture. Further, efforts have also been made to present the internationally acceptable legal standards and guidelines for biosolids management or application.

Keywords: biosolids, sewage, heavy metal, sustainable agriculture

Procedia PDF Downloads 315
16366 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory

Procedia PDF Downloads 360
16365 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: carbon fiber reinforced thermoplastic, finite element analysis, pre-impregnated textile composite, non-isothermal forming

Procedia PDF Downloads 414
16364 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model

Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi

Abstract:

The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.

Keywords: Besag2, CAR models, disease mapping, INLA, spatial models

Procedia PDF Downloads 259