Search results for: adiabatic surface temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11948

Search results for: adiabatic surface temperature

2768 Bacillus cereus Bacteremia and Multi-Organ Failure With Diffuse Brain Hypoxia During Acute Lymphoblastic Leukemia Induction Therapy. A Case Report

Authors: Roni Rachel Mendelson, Caileigh Pudela

Abstract:

Bacillus cereus is a toxin-producing, facultatively anaerobic gram-positive bacterium that is widely distributed environmentally. It can quickly multiply at room temperature with an abundantly present preformed toxin. When ingested, this toxin can cause gastrointestinal illness, which is the commonly known manifestation of the disease. Bacillus cereus sepsis is a disease that is mostly concerning in the population of the immunocompromised patients. One of them is acute lymphoblastic leukemia’s patients during induction. Pediatric acute lymphoblastic leukemia is a common pediatric hematologic malignancy. It is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. We present here a 21-month-old boy undergoing induction chemotherapy for acute lymphoblastic leukemia who developed bacillus sepsis bacteremia and, as a result, multi organ failure leading to seizures and multiple strokes. Our case report highlights the extensive overall and neurological damage that can be caused because of bacillus cereus bacteremia, which can lead to higher mortality rate and decreased in survivorship in a highly curable disease. It is very subtle and difficult to recognize and appears to be deteriorating extremely fast. There should be a low threshold for work up and empiric coverage for neutropenic patients during acute lymphoblastic leukemia induction therapy.

Keywords: acute lymphoblastic leukemia, bacillus cereus, immunocompromised, sepsis

Procedia PDF Downloads 67
2767 The Injection of a Freshly Manufactured Hyaluronan Fragment Promotes Healing of Chronic Wounds: A Clinical Study

Authors: Dylan Treger, Lujia Zhang, Xiaoxiao Jia, Jessica H. Hui, Munkh-Amgalan Gantumur, Mizhou Hui, Li Liu

Abstract:

Hyaluronic acid (HA) is involved in wound healing via inflammation, granulation, and re-epithelialization mechanisms. The poor physical properties of natural high-molecular-weight polymers limit their direct use in the medical field. In this clinical study, we investigated whether the local injection of a tissue-permeable 35 kDa HA fragment (HA35) could favor the healing process in patients with chronic wounds accompanied by neuropathic pain. The HA35 fragments were freshly manufactured by degradation of high-molecular-weight HA with bovine testis-derived hyaluronidase PH20. Twenty patients in this study had nonhealing wounds and wound-related pain for more than 3 months. Freshly produced HA35 was locally injected into healthy skin immediately surrounding chronic wounds once a day for 10 days. Wound-associated pain and the degree of wound healing were evaluated. The injection of HA35 relieved the pain associated with chronic wounds in 24 hours. HA35 treatment significantly promoted the healing of chronic wounds, including expanded fresh granulation tissue on the wounds; reduced darkness or redness, dryness, and damaged areas on the surface of the skin surrounding the wounds; and decreased the size of the wound area. It can be concluded that the topical injection of tissue-permeable HA35 around chronic wounds has great potential to promote wound healing.

Keywords: 35 kDa hyaluronan fragment HA35, chronic wound, wound healing, tissue permeability

Procedia PDF Downloads 135
2766 The Effect of Sago Supplementation on Physiology and Performance in a Hot and Humid Environment

Authors: Che Jusoh, Mohd Rahimi, Toby Mundel

Abstract:

This study was designed to investigate the physiological and performance effects of a local Malaysian native starch (Metroxylin sago) on cycling in a hot (30°C) and humid (78% RH) environment. Eight male, non-heat acclimated, well-trained club cyclists (VO2max 65 ± 10 ml kg-1 min-1, peak aerobic power 397 ± 71 W) completed one familiarization and three experimental trials in our laboratory simulating cycling in environmental conditions of heat and humidity. Each trial consisted of 45 minutes at a fixed workload (55% VO2max) followed by a 15 minute time-trial (~75% VO2max). Sago in porridge form was consumed 1h before exercise (Pre), in gel form during exercise (Dur) and compared to a control trial (Con), using a random, cross-over design. Plasma glucose concentration did not differ between trials (P = 0.06) with an increase from 4.1 ± 0.6 to 6.1 ± 1.6 mmol-1 (Con), 4.8 ± 1.7 to 5.7 ± 0.4 mmol-1 (Pre) and 4.7 ± 0.8 to 6.9 ± 1.4 mmol-1 (Dur) from start to end of exercise. Plasma lactate increased (P = 0.02) from 1.6 ± 0.3 to 7.6 ± 2.2 mmol-1 (Con), 1.7 ± 0.5 to 7.3 ± 2.9 mmol-1 (Pre) and 1.6 ± 0.2 to 7.3 ± 1.8 mmol-1 (Dur) with no effect of trial (P = 0.74). No differences were found between trials for RER (P = 0.328) with values of 0.93 ± 0.05 (Con), 0.94 ± 0.04 (Pre) and 0.92 ± 0.04 (Dur). There were no differences between trials in rectal (P = 0.64) and skin (P = 0.56) temperatures; values reaching 39.1 ± 0.5°C (Con), 38.9 ± 0.4°C (Pre) and 39.1 ± 0.4°C (Dur) for rectal and 32.7 ± 1.2°C (Con), 32.8 ± 1.4°C (Pre) and 32.8 ± 1.8°C (Dur) for skin temperature, respectively. Heart rate (P = 0.07) also did not differ between trials but reached maximal values by the end of time-trial for all trials. Performance was unaffected by trial (P = 0.98) with the average work completed in 15 minutes being 221 ± 33 kJ (Con), 222 ± 31 kJ (Pre) and 219 ± 32 kJ (Dur), respectively. Therefore, the results of this investigation do not support consumption of sago, either before or during exercise, in altering the thermoregulatory, metabolic or performance responses in a hot and humid environment.

Keywords: hot and humid, physiology, time trial performance, thermoregulatory

Procedia PDF Downloads 390
2765 Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant

Authors: Kyriaki Kalaitzidou, Athanasia Tolkou, Christina Raptopoulou, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source.

Keywords: ferric phosphate, phosphorus recovery, phosphorus removal, wastewater treatment

Procedia PDF Downloads 467
2764 The Relation of Water Intake with Level of Knowledge Related to Water Intake in Workers of Food Production Unit, Nutrition Installation at Puspa Hospital, Jakarta

Authors: Siti Rahmah Fitrianti, Mela Milani

Abstract:

Inadequate of water intake has negative effects on the health of the body, which can cause kidney failure and death. One of the factors that can affect someone intake of water is level of knowledge about the importance of water intake itself. A good knowledge of the daily water intake can increase the awareness of daily needed of water intake. Therefore, researchers initiated a study on the relationship of water intake to the level of knowledge related with water intake in food workers, at “Puspa” Hospital. Type of this research is quantitative research with cross-sectional approach. The research data was collected by measuring the independent and dependent variable at a time. This study took place in the food production unit of Nutrition Installation in "Puspa" Hospital, Jakarta in October 2016. The population target in this study were workers in food production unit aged 30-64 years. The instrument was a questionnaire question regarding water intake and 24 hours food recall. The result is 78.6% of respondents have less knowledge about the importance of water intake. Meanwhile, as many as 85.7% of respondents have adequate water intake. Tested by Chi-Square test, showed that no significant relationship between water intake with the level of knowledge related to water intake in workers of food production unit. Adequate intake of water in food workers commonly may be not caused by the level of knowledge related to water intake, but it may be cause of work environment factor which has a high temperature.

Keywords: food production unit, food workers, level of knowledge, water intake

Procedia PDF Downloads 334
2763 Groundwater Potential in the Central Part of Al Jabal Al Akhdar Area, Ne Libya

Authors: Maged El Osta, Milad Masoud

Abstract:

Al Jabal Al Akhdar in the north-eastern part of Libya represents a region with promising ecological underpinning for grazing and other agricultural developments. The groundwater potential of both Upper Cretaceous and Eocene aquifers was studied based the available literature and a complete database for about 112 water wells drilled in the period 2003-2009. In this research, the hydrogeological methods will be integrated with the Geographic Information System (GIS) that played a main role in highlighting the spatial characteristics of the groundwater system. The results indicate that the depth to water for the Upper Cretaceous aquifer ranges from 150 to 458 m, and the piezometric surface decreases from over 500 m (m.s.l) in the northern parts to -20 m (m.s.l) in southeastern part. Salinity ranges between 303 and 1329 mg/l indicating that groundwater belongs to the slightly fresh water class. In the Eocene aquifer, the depth to groundwater ranges from 120 to 290.5 m and the potentiometric level decreases gradually southwards from 220 to -51 m (m.s.l) and characterized by steep slope in the southeastern part of the study area, where the aquifer characterized by relatively high productivity (specific capacity ranges between 10.08 and 332.3 m2/day). The groundwater salinity within this aquifer ranges between 198 and 2800 mg/l (fresh to brackish water class). The annual average rainfall (from 280 to 500 mm) plays a significant role in the recharge of the two aquifers. The priority of groundwater quality and potentiality increases towards the central and northern portions of the concerned area.

Keywords: Eocene and Upper Cretaceous aquifers, rainfall, potentiality, Geographic Information System (GIS)

Procedia PDF Downloads 202
2762 Green Open Space in Sustainable Housing and Islamic Values Perspectives – Case Study Kampung Kauman Malang

Authors: Nunik Junara, Sugeng Triyadi

Abstract:

Sustainable Housing in Islamic perspective, can be defined as a multi-dimensional process that seeks to achieve a balance between economic and socio-cultural aspects on the side, and environmental aspect on the other. There are many quotes verses in the Quran and Hadith that leads to the belief that Islam as a Rahmatan lil Alamin, where men are encouraged to act wisely in treating nature and all living things in it. One aspect of the natural environment that closed to human is plants. In the settlement, the availability of plants or also called green open space is highly recommended. The availability of green open space in the neighborhood, both the public and private green open spaces is expected to reduce the effects of global warming that has engulfed various parts of the world. Green open space that can be viewed from the angle of eco-aestetic and eco-medical in sustainable architecture, is expected to increase the temperature and provide aesthetic impression to the surrounding environment. This paper attempts to discuss the principles of Islamic values related to the natural environment as a major resource for sustainability. This paper also aims to raise awareness of the importance of the theme of sustainability in settlements, especially in big cities. Analysis of the availability of green open space in kampung Kauman Malang is one example of the effort to apply the principles of sustainable housing.

Keywords: green open space, sustainable housing, Islamic values, Kampung Kauman Malang

Procedia PDF Downloads 396
2761 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank

Authors: Chargui Ridha, Agrebi Sameh

Abstract:

The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.

Keywords: phase change materials, storage tank, heat exchanger, flat plate collector

Procedia PDF Downloads 78
2760 Technological Ensuring of the Space Reflector Antennas Manufacturing Process from Carbon Fiber Reinforced Plastics

Authors: Pyi Phyo Maung

Abstract:

In the study, the calculations of the permeability coefficient, values of the volume and porosity of a unit cell of a woven fabric before and after deformation based on the geometrical parameters are presented. Two types of carbon woven fabric structures were investigated: standard type, which integrated the filament, has a cross sectional shape of a cylinder and spread tow type, which has a rectangular cross sectional shape. The space antennas reflector, which distinctive feature is the presence of the surface of double curvature, is considered as the object of the research. Modeling of the kinetics of the process of impregnation of the reflector for the two types of carbon fabric’s unit cell structures was performed using software RAM-RTM. This work also investigated the influence of the grid angle between warp and welt of the unit cell on the duration of impregnation process. The results showed that decreasing the angle between warp and welt of the unit cell, the decreasing of the permeability values were occurred. Based on the results of calculation samples of the reflectors, their quality was determined. The comparisons of the theoretical and experimental results have been carried out. Comparison of the two textile structures (standard and spread tow) showed that the standard textiles with circular cross section were impregnated faster than spread tows, which have a rectangular cross section.

Keywords: vacuum assistant resin infusion, impregnation time, shear angle, reflector and modeling

Procedia PDF Downloads 262
2759 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm

Authors: Muhammad Bilal, Zhongfeng Qiu

Abstract:

Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.

Keywords: AEORNET, AOD, SARA, GOCI, Beijing

Procedia PDF Downloads 153
2758 Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study

Authors: Rosalie Menon, Angela Reid

Abstract:

Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK.

Keywords: building integrated, photovoltatic thermal, pre-heat air, ventilation

Procedia PDF Downloads 151
2757 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 91
2756 Design Practices, Policies and Guidelines towards Implementing Architectural Passive Cooling Strategies in Public Library Buildings in Temperate Climates

Authors: Lesley Metibogun, Regan Potangaroa

Abstract:

Some existing sustainable public libraries in New Zealand now depend on air conditioning system for cooling. This seems completely contradictory to sustainable building initiatives. A sustainable building should be ‘self- sufficient’ and must aim at optimising the use of natural ventilation, wind and daylight and avoiding too much summer heat penetration into the building, to save energy consumption and enhance occupants’ comfort. This paper demonstrates that with appropriate architectural passive design input public libraries do not require air conditioning. Following a brief outline of how our dependence on air conditioning has spread over the full range of building types and climatic zones, this paper focuses on public libraries in temperate climates where passive cooling should be feasible for long periods of mild outside temperature. It was found that current design policies, regulations and guidelines and current building design practices militate passive cooling strategies. Perceived association with prestige, inflexibility of design process, rigid planning regulations and sustainability rating systems were identified as key factors forcing the need for air conditioning. Recommendations are made on how to further encourage development in this direction from the perspective of architectural design. This paper highlights how architectural passive cooling design strategies should be implemented in government initiated policies and regulations to develop a more sustainable public libraries.

Keywords: public library, sustainable design, temperate climate, passive cooling, air conditioning

Procedia PDF Downloads 235
2755 First Earth Size

Authors: Ibrahim M. Metwally

Abstract:

Have you ever thought that earth was not the same earth we live on? Was it bigger or smaller? Was it a great continent surrounded by huge ocean as Alfred Wegener (1912) claimed? Earth is the most amazing planet in our Milky Way galaxy and may be in the universe. It is the only deformed planet that has a variable orbit around the sun and the only planet that has water on its surface. How did earth deformation take place? What does cause earth to deform? What are the results of earth deformation? How does its orbit around the sun change? First earth size computation can be achieved only considering the quantum of iron and nickel rested into earth core. This paper introduces a new theory “Earth expansion Theory”. The principles of “Earth Expansion Theory” are leading to new approaches and concepts to interpret whole earth dynamics and its geological and environmental changes. This theory is not an attempt to unify the two divergent dominant theories of continental drift, plate tectonic theory and earth expansion theory. The new theory is unique since it has a mathematical derivation, explains all the change to and around earth in terms of geological and environmental changes, and answers all unanswered questions in other theories. This paper presents the basic of the introduced theory and discusses the mechanism of earth expansion and how it took place, the forces that made the expansion. The mechanisms of earth size change from its spherical shape with radius about 3447.6 km to an elliptic shape of major radius about 6378.1 km and minor radius of about 6356.8 km and how it took place, are introduced and discussed. This article also introduces, in a more realistic explanation the formation of oceans and seas, the preparation of river formation. It also addresses the role of iron in earth size enlargement process within the continuum mechanics framework.

Keywords: earth size, earth expansion, continuum mechanics, continental and ocean formation

Procedia PDF Downloads 439
2754 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures

Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth

Abstract:

Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).

Keywords: fillet weld, fatigue, residual stress, structure integrity

Procedia PDF Downloads 125
2753 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 46
2752 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor

Authors: Ejaz Ahmed, Huang Yong

Abstract:

The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.

Keywords: CFD, combustion, gas turbine combustor, lean blowout

Procedia PDF Downloads 252
2751 Molecular Characterization of Functional Domain (LRR) of TLR9 Genes in Malnad Gidda Cattle and Their Comparison to Cross Breed Cattle

Authors: Ananthakrishna L. R., Ramesh D., Kumar Wodeyar, Kotresh A. M., Gururaj P. M.

Abstract:

Malnad Gidda is the indigenous recognized cattle breed of Shivamogga District of Karnataka state, India is known for its disease resistance to many of the infectious diseases. There are 25 LRR (Leucine Rich Repeats) identified in bovine (Bos indicus) TLR9. The amino acid sequence of LRR is deduced to nucleotide sequence in BLASTx bioinformatic online tools. LRR2 to LRR10 are involved in pathogen recognition and binding in human TLR9 which showed a higher degree of nucleotide variations with respect to disease resistance to various pathogens. Hence, primers were designed to amplify the flanking sequences of LRR2 to LRR10, to discover the nucleotide variations if any, in Malnad Gidda breed of Cattle which is associated with disease resistance. The DNA isolated from peripheral blood mononuclear cells of ten Malnad Gidda cattle. A desired and specific amplification product of 0.8 kb was obtained at an annealing temperature of 56.6ᵒC. All the PCR products were sequenced on both sides by gene-specific primers. The sequences were compared with TLR9 sequence of cross breed cattle obtained from NCBI data bank. The sequence analysis between Malnad Gidda and crossbreed cattle revealed no nucleotide variations in the region LRR2 to LRR9 which shows the conserved in pathogen binding domain (LRR) of TLR9.

Keywords: leucine rich repeats, Malnad Gidda, cross breed, TLR9

Procedia PDF Downloads 203
2750 Can We Meet the New Challenges of NonIsocyanates Polyurethanes (NIPU) towards NIPU Foams?

Authors: Adrien Cornille, Marine Blain, Bernard Boutevin, Sylvain Caillol

Abstract:

Generally, linear polyurethanes (PUs) are obtained by the reaction between an oligomeric diol, a short diol as chain extender and a diisocyanate. However the use of diisocyanate should be avoided since they are generally very harmful for human health. Therefore the synthesis of NIPUs (non isocyanate PUs) from step growth polymerization of dicyclocarbonates and diamines should be favoured. This method is particularly interesting since no hazardous isocyanates are used. Thus, this reaction, extensively studied by Endo et al. is currently gaining a lot of attention as a substitution route for the synthesis of NIPUs, both from industrial and academic community. However, the reactivity of reaction between amine and cyclic carbonate is a major scientific issue, since cyclic carbonates are poorly reactive. Thus, our team developed several synthetic ways for the synthesis of various di-cyclic carbonates based on C5-, C6- and dithio- cyclic carbonates, from different biobased raw materials (glycerin isosorbide, vegetable oils…). These monomers were used to synthesize NIPUs with various mechanical and thermal properties for various applications. We studied the reactivity of reaction with various catalysts and find optimized conditions for room temperature reaction. We also studied the radical copolymerization of cyclic carbonate monomers in styrene-acrylate copolymers for coating applications. We also succeeded in the elaboration of biobased NIPU flexible foams. To the best of our knowledge, there is no report in literature on the preparation of non-isocyanate polyurethane foams.

Keywords: foam, nonisocyanate polyurethane, cyclic carbonate, blowing agent, scanning electron microscopy

Procedia PDF Downloads 217
2749 Electrical Properties of Nanocomposite Fibres Based On Cellulose and Graphene Nanoplatelets Prepared Using Ionic Liquids

Authors: Shaya Mahmoudian, Mohammad Reza Sazegar, Nazanin Afshari

Abstract:

Graphene, a single layer of carbon atoms in a hexagonal lattice, has recently attracted great attention due to its unique mechanical, thermal and electrical properties. The high aspect ratio and unique surface features of graphene resulted in significant improvements of the nano composites properties. In this study, nano composite fibres made of cellulose and graphene nano platelets were wet spun from solution by using ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) as solvent. The effect of graphene loading on the thermal and electrical properties of the nanocomposite fibres was investigated. The nano composite fibres characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. XRD analysis revealed a cellulose II crystalline structure for regenerated cellulose and the nano composite fibres. SEM images showed a homogenous morphology and round cross section for the nano composite fibres along with well dispersion of graphene nano platelets in regenerated cellulose matrix. The incorporation of graphene into cellulose matrix generated electrical conductivity. At 6 wt. % of graphene, the electrical conductivity was 4.7 × 10-4 S/cm. The nano composite fibres also showed considerable improvements in thermal stability and char yield compared to pure regenerated cellulose fibres. This work provides a facile and environmentally friendly method of preparing nano composite fibres based on cellulose and graphene nano platelets that can find several applications in cellulose-based carbon fibres, conductive fibres, apparel, etc.

Keywords: nanocomposite, graphene nanoplatelets, regenerated cellulose, electrical properties

Procedia PDF Downloads 336
2748 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Fazlul Karim, Esa Al-Islam

Abstract:

Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method

Procedia PDF Downloads 430
2747 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.

Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification

Procedia PDF Downloads 360
2746 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software

Procedia PDF Downloads 110
2745 Meiobenthic Diversity off Pudimadaka, Bay of Bengal, East Coast of India with Special Reference to Free-Living Marine Nematodes

Authors: C. Annapurna, Rao M. Srinivasa, Bhanu C. H. Vijaya, M. Sivalakshmi, Rao P. V. Surya

Abstract:

A study on the community structure of meiobenthic fauna was undertaken during three cruises (June 2008, October 2008 and March 2009). Ten stations at depth between 10 and 40 m off Pudimadaka in Visakhapatnam (Lat.17º29′12″N and Long. 83º00′09″), East coast of India were investigated. Ninety species representing 3 major (meiofaunal) taxa namely foraminifera (2), copepoda (9), nematoda (58) and polychaeta (21) were encountered. Overall, meiofaunal (mean) abundance ranged from 2 individuals to 63 ind. 10cm-² with an average of 24.3 ind.10cm-2. The meiobenthic biomass varied between 0.135 to 0.48 mg.10cm-2 with an average 0.27 ± 0.12. On the whole, nematodes constituted 73.62% of the meiofauna in terms of numerical abundance. Shannon –Wiener index values were 2.053 ± 0.64 (June, 2008), 2.477 ± 0.177 (October 2008) and 2.2815±0.24 (March 2009). Multivariate analyses were used to define the most important taxon in nematode assemblages. Three nematode associations could be recognized off Pudimadaka coast, namely Laimella longicaudata, Euchromodora vulgaris and Sabatieria elongata assemblage (June, 2008); Catanema sp. and Leptosomatum sp. assemblage (October 2008) assemblage; Sabatieria sp. and Setosabatieria sp. assemblage (March 2009). Canonical correspondence analysis showed that temperature, organic matter, silt and mean particle diameter were important in controlling nematode community structure.

Keywords: meiofauna, marine nematode, biodiversity, community structure, India

Procedia PDF Downloads 290
2744 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer

Authors: Bhavya Tripathi, Bhupendra Kumar Sharma

Abstract:

In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.

Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis

Procedia PDF Downloads 186
2743 Elemental and Magnetic Properties of Bed Sediment of Siang River, a Major River of Brahmaputra Basin

Authors: Abhishek Dixit, Sandip S. Sathe, Chandan Mahanta

Abstract:

The Siang river originates in Angsi glacier in southern Tibet (there known as the Yarlung Tsangpo). After traveling through Indus-Tsangpo suture zone and deep gorges near Namcha Barwa peak, it takes a south-ward turn and enters India, where it is known as Siang river and becomes a major tributary of the Brahmaputra in Assam plains. In this study, we have analyzed the bed sediment of the Siang river at two locations (one at extreme upstream near the India-China border and one downstream before Siang Brahmaputra confluence). We have also sampled bed sediment at the remote location of Yammeng river, an eastern tributary of Siang. The magnetic hysteresis properties show the combination of paramagnetic and weak ferromagnetic behavior with a multidomain state. Moreover, curie temperature analysis shows titanomagnetite solid solution series, which is causing the weak ferromagnetic signature. Given that the magnetic mineral was in a multidomain state, the presence of Ti, Fe carrying heave mineral, may be inferred. The Chemical index of alteration shows less weathered sediment. However, the Yammeng river sample being close to source shows fresh grains subjected to physical weathering and least chemically alteration. Enriched Ca and K and depleted Na and Mg with respect to upper continental crust concentration also points toward the less intense chemical weathering along with the dominance of calcite weathering.

Keywords: bed sediment, magnetic properties, Siang, weathering

Procedia PDF Downloads 109
2742 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers

Authors: Venkat Garigapati

Abstract:

Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.

Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin

Procedia PDF Downloads 78
2741 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 109
2740 Towards a Smart Irrigation System Based on Wireless Sensor Networks

Authors: Loubna Hamami, Bouchaib Nassereddine

Abstract:

Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.

Keywords: precision irrigation, sensor, wireless sensor networks, water resources

Procedia PDF Downloads 138
2739 Wakala Buildings of Mamluk Era in Cairo, Egypt and Its Rating According to Rating Criteria of Leadership in Energy and Environmental Design V4

Authors: M. Fathy, I. Maarouf, S. El-Sayary

Abstract:

Our buildings are responsible for around 50% of energy consumption and most of this consumption because of spaces design, low heat isolation building material and occupant presence and behavior in buildings beside non-efficient architectural treatments. It has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. This paper aims to focus on passive treatments in Wakala Buildings in Cairo and how far it meets the LEED Criteria as the LEED – Leadership in Energy and Environmental Design – considered the widest spread rating system in the world. By studying Wakala buildings in Cairo, there are a lot of environmental potentials in it in the field of passive treatments and energy efficiency that could be found in examples by surveying and analyzing Wakala buildings. Besides the environmental treatments through the natural materials and façade architectural treatments, there is a measuring phase to declare the efficiency of the Wakala building through temperature decline between outdoor and indoor the Wakala building. Also, measuring how far the indoor conditions matched the thermal comfort for occupants. After measuring the Wakala buildings, it is the role of applying the criteria of LEED rating system to find out how fare Wakala buildings meet the LEED rating system criteria. After all, the building technologies used in Wakala buildings in the field of passive design and caused that energy efficiency would be clear and what is needed for Wakala buildings to have a LEED Certification.

Keywords: energy awareness, historical commercial buildings, LEED, Wakala buildings

Procedia PDF Downloads 185