Search results for: finite elements methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19576

Search results for: finite elements methods

10426 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety

Authors: Hengameh Hosseini

Abstract:

Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.

Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety

Procedia PDF Downloads 91
10425 Analytical Design of IMC-PID Controller for Ideal Decoupling Embedded in Multivariable Smith Predictor Control System

Authors: Le Hieu Giang, Truong Nguyen Luan Vu, Le Linh

Abstract:

In this paper, the analytical tuning rules of IMC-PID controller are presented for the multivariable Smith predictor that involved the ideal decoupling. Accordingly, the decoupler is first introduced into the multivariable Smith predictor control system by a well-known approach of ideal decoupling, which is compactly extended for general nxn multivariable processes and the multivariable Smith predictor controller is then obtained in terms of the multiple single-loop Smith predictor controllers. The tuning rules of PID controller in series with filter are found by using Maclaurin approximation. Many multivariable industrial processes are employed to demonstrate the simplicity and effectiveness of the presented method. The simulation results show the superior performances of presented method in compared with the other methods.

Keywords: ideal decoupler, IMC-PID controller, multivariable smith predictor, Padé approximation

Procedia PDF Downloads 405
10424 Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials

Authors: R. Devicharan

Abstract:

In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results.

Keywords: FDM process, 3D printing, ABS for 3D printing, PLA for 3D printing, rapid prototyping

Procedia PDF Downloads 587
10423 Comparison of Different Methods of Evaluating Nozzle Junction Stresses under External Loads

Authors: Vinod Kumar, Arun Kumar, Surjit Angra

Abstract:

This paper addresses the junction stress analysis of orthogonally intersecting thin walled cylindrical shell and thin walled cylindrical nozzle subjected to external loading on nozzle. Junction stresses have been calculated theoretically by welding research council (WRC) bulletins 107 and 297 for different nozzle loads. WRC bulletins 107 and 297 have been used by design engineers for calculating nozzle-vessel junction stresses since their publication. They give simple empirical relations and easy in application. Also 3D FEA in which material is elastic has been done in ANSYS software with 8 node solid element model and results of FEA have been compared with WRC results. Stress intensities obtained by WRC 297 are generally slightly higher than obtained by WRC 107. Membrane stresses obtained by FEA are much higher than WRC and membrane plus bending stresses obtained by FEA are lower than WRC.

Keywords: FEA, junction stress, solid element, WRC 107, WRC 297

Procedia PDF Downloads 560
10422 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg

Abstract:

Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.

Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics

Procedia PDF Downloads 154
10421 An Exploration of Possible Impact of Drumming on Mental Health in a Hospital Setting

Authors: Zhao Luqian, Wang Yafei

Abstract:

Participation in music activities is beneficial for enhancing wellbeing, especially for aged people (Creech, 2013). Looking at percussion group in particular, it can facilitate a sense of belonging, relaxation, energy, and productivity, learning, enhanced mood, humanising, seems of accomplishment, escape from trauma, and emotional expression (Newman, 2015). In health literatures, group drumming is effective in reducing stress and improving multiple domains of social-motional behaviors (Ho et al., 2011; Maschi et al., 2010) because it offers a creative and mutual learning space that allows patients to establish a positive peer interaction (Mungas et al., 2014; Perkins, 2016). However, very few studies have investigated the effect of group drumming from the aspect of patients’ needs. Therefore, this study focuses on the discussion of patients' specific needs within mental health and explores how group percussion may meet their needs. Seligman’s (2011) five core elements of mental health were applied as patients’ needs in this study: (1) Positive emotions; (2) Engagement; (3) Relationships; (4) Meaning and (5) Accomplishment. 12 participants aged 57- 80 years were interviewed individually. The researcher also had observation in four drumming groups simultaneously. The results reveal that group drumming could improve participants’ mental wellbeing. First, it created a therapeutic health care environment extending beyond the elimination of boredom, and patients could focus on positive emotions during the session of group drumming. Secondly, it was effective in satisfying patients’ level of engagement. Thirdly, this study found that joining a percussion group would require patients to work on skills such as turn-taking and sharing. This equal relationship is helpful for releasing patients’ negative mood and thus forming tighter relationships between and among them. Fourthly, group drumming was found to meet patients’ meaning needs through offering them a place of belonging and a place for sharing. Its leaner-oriented approach engaged patients by a sense of belonging, accepting, connecting, and ownership. Finally, group drumming could meet patients’ needs for accomplishment through the learning process. The inclusive learning process, which indicates there is no right or wrong throughout the process, allowed patients to make their own decisions. In conclusion, it is difficult for patients to achieve positive emotions, engagement, relationships, meanings, and accomplishments in a hospital setting. Drumming can be practiced for enhancement in terms of reducing patients’ negative emotions and improving their experiences in a hospital through enriched social interaction and sense of accomplishment. Also, it can help patients to enhance social skills in a controlled environment.

Keywords: group drumming, hospital, mental health, music psychology

Procedia PDF Downloads 79
10420 Encapsulation of Volatile Citronella Essential oil by Coacervation: Efficiency and Release Kinetic Study

Authors: Rafeqah Raslan, Mastura AbdManaf, Junaidah Jai, Istikamah Subuki, Ana Najwa Mustapa

Abstract:

The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using gum Arabic and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph was developed with R2 equal to 0.9523 for the accurate determination of encapsulation efficiency and release study. The release kinetic was analyzed based on Fick’s law of diffusion for polymeric system and linear graph of log fraction release over log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The capsules morphology analysis supported the release kinetic mechanisms of produced capsules for both coacervation process.

Keywords: simple coacervation, complex coacervation, encapsulation efficiency, release kinetic study

Procedia PDF Downloads 305
10419 Forensic Investigation Into the Variation of Geological Properties of Soils Bintulu, Sarawak

Authors: Jaithish John

Abstract:

In this paper a brief overview is provided of the developments in interdisciplinary knowledge exchange with use of soil and geological (earth) materials in the search for evidence. The aim is to provide background information on the role and value of understanding ‘earth materials’ from the crime scene through to microscopic scale investigations to support law enforcement agencies in solving criminal and environmental concerns and investigations. This involves the sampling, analysis, interpretation and explanation presentation of all these evidences. In this context, field and laboratory methods are highlighted for the controlled / referenced sample, alibi sample and questioned sample. The aim of forensic analyses of earth materials is to associate these samples taken from a questioned source to determine if there are similar and outstanding characteristics features of earth materials crucial to support the investigation to the questioned earth materials and compare it to the controlled / referenced sample and alibi samples.

Keywords: soil, texture, grain, microscopy

Procedia PDF Downloads 71
10418 The Environmental Concerns in Coal Mining, and Utilization in Pakistan

Authors: S. R. H. Baqri, T. Shahina, M. T. Hasan

Abstract:

Pakistan is facing acute shortage of energy and looking for indigenous resources of the energy mix to meet the short fall. After the discovery of huge coal resources in Thar Desert of Sindh province, focus has shifted to coal power generation. The government of Pakistan has planned power generation of 20000 MW on coal by the year 2025. This target will be achieved by mining and power generation in Thar coal Field and on imported coal in different parts of Pakistan. Total indigenous coal production of around 3.0 million tons is being utilized in brick kilns, cement and sugar industry. Coal-based power generation is only limited to three units of 50 MW near Hyderabad from nearby Lakhra Coal field. The purpose of this presentation is to identify and redressal of issues of coal mining and utilization with reference to environmental hazards. Thar coal resource is estimated at 175 billion tons out of a total resource estimate of 184 billion tons in Pakistan. Coal of Pakistan is of Tertiary age (Palaeocene/Eocene) and classified from lignite to sub-bituminous category. Coal characterization has established three main pollutants such as Sulphur, Carbon dioxide and Methane besides some others associated with coal and rock types. The element Sulphur occurs in organic as well as inorganic forms associated with coals as free sulphur and as pyrite, gypsum, respectively. Carbon dioxide, methane and minerals are mostly associated with fractures, joints local faults, seatearth and roof rocks. The abandoned and working coal mines give kerosene odour due to escape of methane in the atmosphere. While the frozen methane/methane ices in organic matter rich sediments have also been reported from the Makran coastal and offshore areas. The Sulphur escapes into the atmosphere during mining and utilization of coal in industry. The natural erosional processes due to rivers, streams, lakes and coastal waves erode over lying sediments allowing pollutants to escape into air and water. Power plants emissions should be controlled through application of appropriate clean coal technology and need to be regularly monitored. Therefore, the systematic and scientific studies will be required to estimate the quantity of methane, carbon dioxide and sulphur at various sites such as abandoned and working coal mines, exploratory wells for coal, oil and gas. Pressure gauges on gas pipes connecting the coal-bearing horizons will be installed on surface to know the quantity of gas. The quality and quantity of gases will be examined according to the defined intervals of times. This will help to design and recommend the methods and procedures to stop the escape of gases into atmosphere. The element of Sulphur can be removed partially by gravity and chemical methods after grinding and before industrial utilization of coal.

Keywords: atmosphere, coal production, energy, pollutants

Procedia PDF Downloads 422
10417 Factors of Self-Sustainability in Social Entrepreneurship: Case Studies of ACT Group Čakovec and Friskis and Svettis Stockholm

Authors: Filip Majetić, Dražen Šimleša, Jelena Puđak, Anita Bušljeta Tonković, Svitlana Pinchuk

Abstract:

This paper focuses on the self-sustainability aspect of social entrepreneurship (SE). We define SE as a form of entrepreneurship that is social/ecological mission oriented. It means SE organizations start and run businesses and use them to accomplish their social/ecological missions i.e. to solve social/ecological problems or fulfill social/ecological needs. Self-sustainability is defined as the capability of an SE organization to operate by relying on the money earned through trading its products in the free market. For various reasons, the achievement of self-sustainability represents a fundamental (business) challenge for many SE organizations. Those that are not able to operate using the money made through commercial activities, in order to remain active, rely on alternative, non-commercial streams of income such as grants, donations, and public subsidies. Starting from this widespread (business) challenge, we are interested in exploring elements that (could) influence the self-sustainability in SE organizations. Therefore, the research goal is to empirically investigate some of the self-sustainability factors of two notable SE organizations from different socio-economic contexts. A qualitative research, using the multiple case study approach, was conducted. ACT Group Čakovec (ACT) from Croatia was selected for the first case because it represents one of the leading and most self-sustainable SE organization in the region (in 2015 55% of the organization’s budget came from commercial activities); Friskis&Svettis Stockholm (F&S) from Sweden was selected for the second case because it is a rare example of completely self-sustainable SE organization in Europe (100% of the organization’s budget comes from commercial activities). The data collection primarily consists of conducting in-depth interviews. Additionally, the content of some of the organizations' official materials are analyzed (e.g. business reports, marketing materials). The interviewees are selected purposively and include: six highly ranked F&S members who represent five different levels in the hierarchy of their organization; five highly ranked ACT members who represent three different levels in the hierarchy of the organization. All of the interviews contain five themes: a) social values of the organization, b) organization of work, c) non-commercial income sources, d) marketing/collaborations, and e) familiarity with the industry characteristics and trends. The gathered data is thematically analyzed through the coding process for which Atlas.ti software for qualitative data analysis is used. For the purpose of creating thematic categories (codes), the open coding is used. The research results intend to provide new theoretical insights on factors of SE self-sustainability and, preferably, encourage practical improvements in the field.

Keywords: Friskis&Svettis, self-sustainability factors, social entrepreneurship, Stockholm

Procedia PDF Downloads 203
10416 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 366
10415 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 152
10414 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 216
10413 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System

Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal

Abstract:

The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.

Keywords: microgravity effect, response surface, terminal speed, unmanned system

Procedia PDF Downloads 160
10412 Analysis of Fertilizer Effect in the Tilapia Growth of Mozambique (Oreochromis mossambicus)

Authors: Sérgio Afonso Mulema, Andrés Carrión García, Vicente Ernesto

Abstract:

This paper analyses the effect of fertilizer (organic and inorganic) in the growth of tilapia. An experiment was implemented in the Aquapesca Company of Mozambique; there were considered four different treatments. Each type of fertilizer was applied in two of these treatments; a feed was supplied to the third treatment, and the fourth was taken as control. The weight and length of the tilapia were used as the growth parameters, and to measure the water quality, the physical-chemical parameters were registered. The results show that the weight and length were different for tilapias cultivated in different treatments. These differences were evidenced mainly by organic and feed treatments, where there was the largest and smallest value of these parameters, respectively. In order to prove that these differences were caused only by applied treatment without interference for the aquatic environment, a Fisher discriminant analysis was applied, which confirmed that the treatments were exposed to the same environment condition.

Keywords: fertilizer, tilapia, growth, statistical methods

Procedia PDF Downloads 215
10411 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 269
10410 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 109
10409 Investigation of Graphene-MoS₂ Nanocomposite as Counter Electrode in Dye-Sensitized Solar Cells

Authors: Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Mehdi Ghahari

Abstract:

Dye-sensitized solar cells are sustainable tool for generating electrical energy using sunlight. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Herein, we employed a MoS₂/graphene composite instead of platinum in the DSSCs. Platinum is an efficient and conventional counter electrode in the preparation of DSSCs, for this purpose, the effect of the presence of platinum electrode was also studied under similar conditions. The prepared nanocomposite product was checked by analysis methods to confirm the correctness of the construction and the desired structure. Finally, the DSSCs were fabricated using MoS₂/graphene composite, and to compare the results, the DSSCs were also prepared using platinum. The results showed that the prepared composite has a similar performance compared to platinum and can replace it.

Keywords: efficiency, dye-sensitized solar cell, nano-composite MoS₂, platinum free

Procedia PDF Downloads 52
10408 The Digital Divide: Examining the Use and Access to E-Health Based Technologies by Millennials and Older Adults

Authors: Delana Theiventhiran, Wally J. Bartfay

Abstract:

Background and Significance: As the Internet is becoming the epitome of modern communications, there are many pragmatic reasons why the digital divide matters in terms of accessing and using E-health based technologies. With the rise of technology usage globally, those in the older adult generation may not be as familiar and comfortable with technology usage and are thus put at a disadvantage compared to other generations such as millennials when examining and using E-health based platforms and technology. Currently, little is known about how older adults and millennials access and use e-health based technologies. Methods: A systemic review of the literature was undertaken employing the following three databases: (i) PubMed, (ii) ERIC, and (iii) CINAHL; employing the search term 'digital divide and generations' to identify potential articles. To extract required data from the studies, a data abstraction tool was created to obtain the following information: (a) author, (b) year of publication, (c) sample size, (d) country of origin, (e) design/methods, (f) major findings/outcomes obtained. Inclusion criteria included publication dates between the years of Jan 2009 to Aug 2018, written in the English language, target populations of older adults aged 65 and above and millennials, and peer reviewed quantitative studies only. Major Findings: PubMed provided 505 potential articles, where 23 of those articles met the inclusion criteria. Specifically, ERIC provided 53 potential articles, where no articles met criteria following data extraction. CINAHL provided 14 potential articles, where eight articles met criteria following data extraction. Conclusion: Practically speaking, identifying how newer E-health based technologies can be integrated into society and identifying why there is a gap with digital technology will help reduce the impact on generations and individuals who are not as familiar with technology and Internet usage. The largest concern of all is how to prepare older adults for new and emerging E-health technologies. Currently, there is a dearth of literature in this area because it is a newer area of research and little is known about it. The benefits and consequences of technology being integrated into daily living are being investigated as a newer area of research. Several of the articles (N=11) indicated that age is one of the larger factors contributing to the digital divide. Similarly, many of the examined articles (N=5) identify that privacy concerns were one of the main deterrents of technology usage for elderly individuals aged 65 and above. The older adult generation feels that privacy is one of the major concerns, especially in regards to how data is collected, used and possibly sold to third party groups by various websites. Additionally, access to technology, the Internet, and infrastructure also plays a large part in the way that individuals are able to receive and use information. Lastly, a change in the way that healthcare is currently used, received and distributed would also help attribute to the change to ensure that no generation is left behind in a technologically advanced society.

Keywords: digital divide, e-health, millennials, older adults

Procedia PDF Downloads 157
10407 Elaboration and Characterization of PP/TiO2 Composites

Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour

Abstract:

The aim of present work is to characterize the PP/TiO2 blends as composites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the impact strength results which increased about 39% compared to neat PP. The rheological study showed an increase in the fluidity in all developed composite compositions, involved by the good dispersion of TiO2 particles.

Keywords: composites, PP, TiO2, comixing, mechanical treatment

Procedia PDF Downloads 261
10406 Enhancing Emotional Regulation in Autistic Students with Intellectual Disabilities through Visual Dialogue: An Action Research Study

Authors: Tahmina Huq

Abstract:

This paper presents the findings of an action research study that aimed to investigate the efficacy of a visual dialogue strategy in assisting autistic students with intellectual disabilities in managing their immediate emotions and improving their academic achievements. The research sought to explore the effectiveness of teaching self-regulation techniques as an alternative to traditional approaches involving segregation. The study identified visual dialogue as a valuable tool for promoting self-regulation in this specific student population. Action research was chosen as the methodology due to its suitability for immediate implementation of the findings in the classroom. Autistic students with intellectual disabilities often face challenges in controlling their emotions, which can disrupt their learning and academic progress. Conventional methods of intervention, such as isolation and psychologist-assisted approaches, may result in missed classes and hindered academic development. This study introduces the utilization of visual dialogue between students and teachers as an effective self-regulation strategy, addressing the limitations of traditional approaches. Action research was employed as the methodology for this study, allowing for the direct application of the findings in the classroom. The study observed two 15-year-old autistic students with intellectual disabilities who exhibited difficulties in emotional regulation and displayed aggressive behaviors. The research question focused on the effectiveness of visual dialogue in managing the emotions of these students and its impact on their learning outcomes. Data collection methods included personal observations, log sheets, personal reflections, and visual documentation. The study revealed that the implementation of visual dialogue as a self-regulation strategy enabled the students to regulate their emotions within a short timeframe (10 to 30 minutes). Through visual dialogue, they were able to express their feelings and needs in socially appropriate ways. This finding underscores the significance of visual dialogue as a tool for promoting emotional regulation and facilitating active participation in classroom activities. As a result, the students' learning outcomes and social interactions were positively impacted. The findings of this study hold significant implications for educators working with autistic students with intellectual disabilities. The use of visual dialogue as a self-regulation strategy can enhance emotional regulation skills and improve overall academic progress. The action research approach outlined in this paper provides practical guidance for educators in effectively implementing self-regulation strategies within classroom settings. In conclusion, the study demonstrates that visual dialogue is an effective strategy for enhancing emotional regulation in autistic students with intellectual disabilities. By employing visual communication, students can successfully regulate their emotions and actively engage in classroom activities, leading to improved learning outcomes and social interactions. This paper underscores the importance of implementing self-regulation strategies in educational settings to cater to the unique needs of autistic students.

Keywords: action research, self-regulation, autism, visual communication

Procedia PDF Downloads 49
10405 Effect of Extraction Method, Soil Media on Germination and Seedling Establishment of Chrysophyllum Albidum

Authors: Peace Nnadi

Abstract:

This research was aimed at using seed extraction methods, soil media and planting density to enhance seed germination and seedling growth of Chrysophyllum albidum commonly known as star apple. The experiment was conducted in two stages, mature, healthy ripe fruits were used and the seeds were extracted from the fruits. The experiment involves the extraction of uniform number of seeds of pulpled and depulped, planted into the various soil media. Result on planting density also showed that Depulped seeds/ seedlings at (p=0.05), recorded significant increase in germination percentage and seedling growth. The finding shows that when seeds are depulped, they enhance germination percentage and addition of poultry manure to the soil media encourages plant growth.

Keywords: germination, seedling, soil media, extraction

Procedia PDF Downloads 306
10404 A Failure to Strike a Balance: The Use of Parental Mediation Strategies by Foster Carers and Social Workers

Authors: Jennifer E Simpson

Abstract:

Background and purpose: The ubiquitous use of the Internet and social media by children and young people has had a dual effect. The first is to open a world of possibilities and promise that is characterized by the ability to consume and create content, connect with friends, explore and experiment. The second relates to risks such as unsolicited requests, sexual exploitation, cyberbullying and commercial exploitation. This duality poses significant difficulties for a generation of foster carers and social workers who have no childhood experience to draw on in terms of growing up using the Internet, social media and digital devices. This presentation is concerned with the findings of a small qualitative study about the use of digital devices and the Internet by care-experienced young people to stay in touch with their families and the way this was managed by foster carers and social workers using specific parental mediation strategies. The findings highlight that restrictive strategies were used by foster carers and endorsed by social workers. An argument is made for an approach that develops a series of balanced solutions that move foster carers from such restrictive approaches to those that are grounded in co-use and are interpretive in nature. Methods: Using a purposive sampling strategy, 12 triads consisting of care-experienced young people (aged 13-18 years), their foster carers and allocated social workers were recruited. All respondents undertook a semi-structured interview, with the young people detailing what social media apps and other devices they used to contact their families via an Ecomap. The foster carers and social workers shared details of the methods and approaches they used to manage digital devices and the Internet in general. Data analysis was performed using a Framework analytic method to explore the various attitudes, as well as complementary and contradictory perspectives of the young people, their foster carers and allocated social workers. Findings: The majority of foster carers made use of parental mediation strategies that erred on the side of typologies that included setting rules and regulations (restrictive), ad-hoc checking of a young person’s behavior and device (monitoring), and software used to limit or block access to inappropriate websites (technical). It was noted that minimal use was made by foster carers of parental mediation strategies that included talking about content (active/interpretive) or sharing Internet activities (co-use). Amongst the majority of the social workers, they also had a strong preference for restrictive approaches. Conclusions and implications: Trepidations on the part of both foster carers and social workers about the use of digital devices and the Internet meant that the parental strategies used were weighted more towards restriction, with little use made of approaches such as co-use and interpretative. This lack of balance calls for solutions that are grounded in co-use and an interpretive approach, both of which can be achieved through training and support, as well as wider policy change.

Keywords: parental mediation strategies, risk, children in state care, online safety

Procedia PDF Downloads 57
10403 Enhancement Performance of Desalination System Using Humidification and Dehumidification Processes

Authors: Zeinab Syed Abdel Rehim

Abstract:

Water shortage is considered as one of the huge problems the world encounter now. Water desalination is considered as one of the more suitable methods governments can use to substitute the increased need for potable water. The humidification-dehumidification process for water desalination is viewed as a promising technique for small capacity production plants. The process has several attraction features which include the use of sustainable energy sources, low technology, and low-temperature dehumidification. A pilot experimental set-up plant was constructed with the conventional HVAC components such as air blower that supplies air to an air duct inside which air preheater, steam injector and cooling coil of a small refrigeration unit are placed. The present work evaluates the characteristics of humidification-dehumidification process for water desalination as a function of air flow rate, total power input and air inlet temperature in order to study the optimum conditions required to produce distilled water.

Keywords: condensation, dehumidification, evaporation, humidification, water desalination

Procedia PDF Downloads 227
10402 Synergistic Extraction Study of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform

Authors: F. Adjel, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm-3 TOPO in chloroform. From an synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, TOPO, synergism

Procedia PDF Downloads 510
10401 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 101
10400 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 514
10399 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: linear stability analysis, heat source, porous medium, mass flow

Procedia PDF Downloads 708
10398 A Conceptual Study for Investigating the Preliminary State of Energy at the Birth of Universe and Understanding Its Emergence From the State of Nothing

Authors: Mahmoud Reza Hosseini

Abstract:

The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a “neutral state” possessing an energy level which is referred to as the “base energy”. The governing principles of base energy are discussed in detail in our second paper in the series “A Conceptual Study for Addressing the Singularity of the Emerging Universe” which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.

Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution

Procedia PDF Downloads 31
10397 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem

Procedia PDF Downloads 221