Search results for: time optimal control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27534

Search results for: time optimal control

26664 EWMA and MEWMA Control Charts for Monitoring Mean and Variance in Industrial Processes

Authors: L. A. Toro, N. Prieto, J. J. Vargas

Abstract:

There are many control charts for monitoring mean and variance. Among these, the X y R, X y S, S2 Hotteling and Shewhart control charts, for mentioning some, are widely used for monitoring mean a variance in industrial processes. In particular, the Shewhart charts are based on the information about the process contained in the current observation only and ignore any information given by the entire sequence of points. Moreover, that the Shewhart chart is a control chart without memory. Consequently, Shewhart control charts are found to be less sensitive in detecting smaller shifts, particularly smaller than 1.5 times of the standard deviation. These kind of small shifts are important in many industrial applications. In this study and effective alternative to Shewhart control chart was implemented. In case of univariate process an Exponentially Moving Average (EWMA) control chart was developed and Multivariate Exponentially Moving Average (MEWMA) control chart in case of multivariate process. Both of these charts were based on memory and perform better that Shewhart chart while detecting smaller shifts. In these charts, information the past sample is cumulated up the current sample and then the decision about the process control is taken. The mentioned characteristic of EWMA and MEWMA charts, are of the paramount importance when it is necessary to control industrial process, because it is possible to correct or predict problems in the processes before they come to a dangerous limit.

Keywords: control charts, multivariate exponentially moving average (MEWMA), exponentially moving average (EWMA), industrial control process

Procedia PDF Downloads 337
26663 Green Design Study of Prefabricated Community Control Measures in Response to Public Health Emergencies

Authors: Enjia Zhang

Abstract:

During the prevention and control of the COVID-19 pandemic, all communities in China were gated and under strict management, which was highly effective in preventing the spread of the epidemic from spreading. Based on the TRIZ theory, this paper intends to propose green design strategies of community control in response to public health emergencies and to optimize community control facilities according to the principle of minimum transformation. Through the questionnaire method, this paper investigates and summarizes the situation and problems of community control during the COVID-19 pandemic. Based on these problems, the TRIZ theory is introduced to figure out the problems and associates them with prefabricated facilities. Afterward, the innovation points and solutions of prefabricated community control measures are proposed by using the contradiction matrix. This paper summarizes the current situation of community control under public health emergencies and concludes the problems such as simple forms of temporary roadblocks, sudden increase of community traffic pressure, and difficulties to access public spaces. The importance of entrance and exit control in community control is emphasized. Therefore, the community control measures are supposed to focus on traffic control, and the external access control measures, including motor vehicles, non-motor vehicles, residents and non-residents access control, and internal public space access control measures, including public space control shared with the society or adjacent communities, are proposed in order to make the community keep the open characteristics and have the flexibility to deal with sudden public health emergencies in the future.

Keywords: green design, community control, prefabricated structure, public health emergency

Procedia PDF Downloads 109
26662 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 151
26661 Ant Colony Optimization Control for Multilevel STATCOM

Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa

Abstract:

Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.

Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)

Procedia PDF Downloads 540
26660 Adaptive Control Approach for an Unmanned Aerial Manipulator

Authors: Samah Riache, Madjid Kidouche

Abstract:

In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller.

Keywords: adaptive algorithm, quadrotor, robotic arm, sliding mode control

Procedia PDF Downloads 163
26659 Hand Motion and Gesture Control of Laboratory Test Equipment Using the Leap Motion Controller

Authors: Ian A. Grout

Abstract:

In this paper, the design and development of a system to provide hand motion and gesture control of laboratory test equipment is considered and discussed. The Leap Motion controller is used to provide an input to control a laboratory power supply as part of an electronic circuit experiment. By suitable hand motions and gestures, control of the power supply is provided remotely and without the need to physically touch the equipment used. As such, it provides an alternative manner in which to control electronic equipment via a PC and is considered here within the field of human computer interaction (HCI).

Keywords: control, hand gesture, human computer interaction, test equipment

Procedia PDF Downloads 303
26658 A Variable Structural Control for a Flexible Lamina

Authors: Xuezhang Hou

Abstract:

A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.

Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators

Procedia PDF Downloads 69
26657 Automated Marker Filling System

Authors: Pinisetti Swami Sairam, Meera C. S.

Abstract:

Marker pens are widely used all over the world, mainly in educational institutions due to their neat, accurate and easily erasable nature. But refilling the ink in these pens is a tedious and time consuming job. Besides, it requires careful handling of the pens and ink bottle. A fully automated marker filling system is a solution developed to overcome this problem. The system comprises of pneumatics and electronics modules as well as PLC control. The system design is done in such a way that the empty markers are dumped in a marker container which then sent through different modules of the system in order to refill it automatically. The filled markers are then collected in a marker container. Refilling of ink takes place in different stages inside the system. An ink detecting system detects the colour of the marker which is to be filled and then refilling is done. The processes like capping and uncapping of the cap as well as screwing and unscrewing of the tip are done with the help of robotic arm and gripper. We make use of pneumatics in this system in order to get the precision while performing the capping, screwing, and refilling operations. Thus with the help of this system we can achieve cleanliness, accuracy, effective and time saving in the process of filling a marker.

Keywords: automated system, market filling, information technology, control and automation

Procedia PDF Downloads 478
26656 A Study of Chaos Control Schemes for Plankton-Fish Dynamics

Authors: Rajinder Pal Kaur, Amit Sharma, Anuj Kumar Sharma, Govind Prasad Sahu

Abstract:

The existence of chaos in the marine ecosystems may cause planktonic blooms, disease outbreaks, extinction of some plankton species, or some complex dynamics in oceans, which can adversely affect the sustainable marine ecosystem. The control of the chaotic plankton-fish dynamics is one of the main motives of marine ecologists. In this paper, we have studied the impact of phytoplankton refuge, zooplankton refuge, and fear effect on the chaotic plankton-fish dynamics incorporating phytoplankton, zooplankton, and fish biomass. The fear of fish predation transfers the unpredictable(chaotic) behavior of the plankton system to a stable orbit. The defense mechanism developed by prey species due to fear of the predator population can also terminate chaos from the given dynamics. Moreover, the impact of external disturbances like seasonality, noise, periodic fluctuations, and time delay on the given chaotic plankton system has also been discussed. We have applied feedback mechanisms to control the complexity of the system through the parameter noise. The non-feedback schemes are implemented to observe the role of seasonal force, periodic fluctuations, and time delay in suppressing the given chaotic system. Analytical results are substantiated by numerical simulation.

Keywords: plankton, chaos, noise, seasonality, fluctuations, fear effect, prey refuge

Procedia PDF Downloads 67
26655 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors

Procedia PDF Downloads 453
26654 Surface Sterilization Of Aquatic Plant, Cryptocoryne affinis by Using Clorox and Mercury Chloride

Authors: Sridevi Devadas

Abstract:

This study was aimed to examine the combination efficiency of Clorox (5.25% Sodium Hypochlorite) and mercury chloride (HgCl2) as a reagent for surface sterilization process of aquatic plant and cryptocoryne affinis (C. affinis). The treatment applied 10% of the Clorox and 0.1ppm of mercury chloride. The maximum exposure time for clorox and mercury chloride was 10min and 60sec respectively. After exposed to the treatments protocols (T1-T15) the explants were transferred to culture room under control temperature at 25°C ± 2°C and subjected to 16 hours fluorescence light (2000 lumens) for 30 days. The both sterilizing agents were not applied on control specimens. Upon analysis, The result indicates all of the treatments protocols produced sterile explants at range of minimum 1.5 ± 0.7 (30%) to maximum 5.0 ± 0.0 (100%). Meanwhile, maximum 1.0 ± 0.7 numbers of leaves and 1.4 ± 0.6 numbers of roots have been produced. The optimized exposure time was 0 to 15 min for Clorox and 30 sec for HgCl2 whereby 90% to 100% sterilization was archived at this condition.

Keywords: Cryptocoryne affinis, surface sterilization, tissue culture, clorox, mercury chloride

Procedia PDF Downloads 358
26653 Clustering Based and Centralized Routing Table Topology of Control Protocol in Mobile Wireless Sensor Networks

Authors: Mbida Mohamed, Ezzati Abdellah

Abstract:

A strong challenge in the wireless sensor networks (WSN) is to save the energy and have a long life time in the network without having a high rate of loss information. However, topology control (TC) protocols are designed in a way that the network is divided and having a standard system of exchange packets between nodes. In this article, we will propose a clustering based and centralized routing table protocol of TC (CBCRT) which delegates a leader node that will encapsulate a single routing table in every cluster nodes. Hence, if a node wants to send packets to the sink, it requests the information's routing table of the current cluster from the node leader in order to root the packet.

Keywords: mobile wireless sensor networks, routing, topology of control, protocols

Procedia PDF Downloads 248
26652 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices

Authors: Amani Abdallah, Isam Shahrour

Abstract:

The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.

Keywords: distribution system, drinking water, refraction index, sensor, real-time

Procedia PDF Downloads 335
26651 Optimal Portfolio Selection under Treynor Ratio Using Genetic Algorithms

Authors: Imad Zeyad Ramadan

Abstract:

In this paper a genetic algorithm was developed to construct the optimal portfolio based on the Treynor method. The GA maximizes the Treynor ratio under budget constraint to select the best allocation of the budget for the companies in the portfolio. The results show that the GA was able to construct a conservative portfolio which includes companies from the three sectors. This indicates that the GA reduced the risk on the investor as it choose some companies with positive risks (goes with the market) and some with negative risks (goes against the market).

Keywords: oOptimization, genetic algorithm, portfolio selection, Treynor method

Procedia PDF Downloads 433
26650 Treatment of Mycotic Dermatitis in Domestic Animals with Poly Herbal Drug

Authors: U. Umadevi, T. Umakanthan

Abstract:

Globally, mycotic dermatitis is very common but there is no single proven specific allopathic treatment regimen. In this study, domestic animals with skin diseases of different age and breed from geographically varied regions of Tamil Nadu state, India were employed. Most of them have had previous treatment with native and allopathic medicines without success. Clinically, the skin lesions were found to be mild to severe. The trial animals were treated with poly herbal formulation (ointment) prepared using the indigenous medicinal plants – viz Andrographis paniculata, Lawsonia inermis and Madhuca longifolia. Allopathic antifungal drugs and ointments, povidone iodine and curabless (Terbinafine HCl, Ofloxacin, Ornidazole, Clobetasol propionate) were used in control. Comparatively, trial animals were found to have lesser course of treatment time and higher recovery rate than control. In Ethnoveterinary, this combination was tried for the first time. This herbal formulation is economical and an alternative for skin diseases.

Keywords: allopathic drugs, dermatitis, domestic animals, poly herbal formulation

Procedia PDF Downloads 301
26649 Real Time Data Communication with FlightGear Using Simulink Over a UDP Protocol

Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique

Abstract:

Simulation and modelling of Unmanned Aero Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade. The reason is next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.

Keywords: aerospace, flight control, flightgear, communication, Simulink

Procedia PDF Downloads 255
26648 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices

Authors: Nathakhun Wiroonsri

Abstract:

There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.

Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition

Procedia PDF Downloads 95
26647 Effect of Electric Stimulation on Characteristic Changes in Hot-Boned Beef Brisket of Different Potential Tenderness

Authors: Orose Rugchati, Kanita Thanacharoenchanaphas, Sarawut Wattanawongpitak

Abstract:

In this study, the effect of electric stimulation on the quality of hot-boned beef brisket muscles was evaluated, including the tenderness, pH, temperature change, and colorant. Muscles were obtained from steers in the local slaughter house. (3 steers for each muscle), removed from the carcasses 4-hour postmortem and variable time to treated with direct current electric 1 and 5 minutes, respectively. Six different electric intensities (direct current voltage of 50, 70 and 90 Volt, pulse with 10, 20 and 40 ms) plus a control were applied to each muscle to determine the optimum treatment conditions. Hot-boned beef brisket was found to get tender with increasing treatment direct current voltage and reduction in the shear force with pulsed with electric treatment. But in a long time to treated with electric current get fading in red color and temperature increase whereas pH quite different compared to non-treated control samples.

Keywords: electric stimulation, characteristic changes, hot-boned beef brisket, potential tenderness

Procedia PDF Downloads 328
26646 Legal Allocation of Risks: A Computational Analysis of Force Majeure Clauses

Authors: Farshad Ghodoosi

Abstract:

This article analyzes the effect of supervening events in contracts. Contracts serve an important function: allocation of risks. In spite of its importance, the case law and the doctrine are messy and inconsistent. This article provides a fresh look at excuse doctrines (i.e., force majeure, impracticability, impossibility, and frustration) with a focus on force majeure clauses. The article makes the following contributions: First, it furnishes a new conceptual and theoretical framework of excuse doctrines. By distilling the decisions, it shows that excuse doctrines rests on the triangle of control, foreseeability, and contract language. Second, it analyzes force majeure clauses used by S&P 500 companies to understand the stickiness and similarity of such clauses and the events they cover. Third, using computational and statistical tools, it analyzes US cases since 1810 in order to assess the weight given to the triangle of control, foreseeability, and contract language. It shows that the control factor plays an important role in force majeure analysis, while the contractual interpretation is the least important factor. The Article concludes that it is the standard for control -whether the supervening event is beyond the control of the party- that determines the outcome of cases in the force majeure context and not necessarily the contractual language. This article has important implications on COVID-19-related contractual cases. Unlike the prevailing narrative that it is the language of the force majeure clause that’s determinative, this article shows that the primarily focus of the inquiry will be on whether the effects of COVID-19 have been beyond the control of the promisee. Normatively, the Article suggests that the trifactor of control, foreseeability, and contractual language are not effective for allocation of legal risks in times of crises. It puts forward a novel approach to force majeure clauses whereby that the courts should instead focus on the degree to which parties have relied on (expected) performance, in particular during the time of crisis.

Keywords: contractual risks, force majeure clauses, foreseeability, control, contractual language, computational analysis

Procedia PDF Downloads 124
26645 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia

Authors: David Calderon Villegas, Thomas Kaltizky

Abstract:

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.

Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function

Procedia PDF Downloads 116
26644 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 130
26643 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller

Authors: Feleke Tsegaye

Abstract:

The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.

Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path

Procedia PDF Downloads 38
26642 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation

Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz

Abstract:

Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.

Keywords: froth flotation, gelatinization, sodium hydroxide, starches and flours

Procedia PDF Downloads 348
26641 Controlling the Expense of Political Contests Using a Modified N-Players Tullock’s Model

Authors: C. Cohen, O. Levi

Abstract:

This work introduces a generalization of the classical Tullock’s model of one-stage contests under complete information with multiple unlimited numbers of contestants. In classical Tullock’s model, the contest winner is not necessarily the highest bidder. Instead, the winner is determined according to a draw in which the winning probabilities are the relative contestants’ efforts. The Tullock modeling fits well political contests, in which the winner is not necessarily the highest effort contestant. This work presents a modified model which uses a simple non-discriminating rule, namely, a parameter to influence the total costs planned for an election, for example, the contest designer can control the contestants' efforts. The winner pays a fee, and the losers are reimbursed the same amount. Our proposed model includes a mechanism that controls the efforts exerted and balances competition, creating a tighter, less predictable and more interesting contest. Additionally, the proposed model follows the fairness criterion in the sense that it does not alter the contestants' probabilities of winning compared to the classic Tullock’s model. We provide an analytic solution for the contestant's optimal effort and expected reward.

Keywords: contests, Tullock's model, political elections, control expenses

Procedia PDF Downloads 130
26640 Guidelines for Proper Internal Control of Internet Payment: A Case Study of Internet Payment Gateway, Thailand

Authors: Pichamon Chansuchai

Abstract:

The objective of this research were to investigate electronic payment system on the internet and offer the guidelines for proper internal control of the payment system based on international standard security control (ISO/IEC 17799:2005),in a case study of payment of the internet, Thailand. The guidelines covered five important areas: (1) business requirement for access control, (2) information systems acquisition, development and maintenance, (3) information security incident management, (4) business continuity management, and (5) compliance with legal requirement. The findings from this qualitative study revealed the guidelines for proper internet control that were more reliable and allow the same line of business to implement the same system of control.

Keywords: audit, best practice, internet, payment

Procedia PDF Downloads 482
26639 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System

Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour

Abstract:

This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.

Keywords: adaptive control, active steering, pole placement, vehicle dynamics

Procedia PDF Downloads 449
26638 A Metaheuristic Approach for the Pollution-Routing Problem

Authors: P. Parthiban, Sonu Rajak, R. Dhanalakshmi

Abstract:

This paper presents an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the Vehicle Routing Problem (VRP) with environmental considerations, which is well known as Pollution-Routing Problem (PRP). It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. Since VRP is NP-hard problem, so PRP also a NP-hard problem, which requires metaheuristics to solve this type of problems. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage, a SOA is run on the resulting VRPTW solution. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm can provide good solutions within reasonable computational time.

Keywords: ant colony optimization, CO2 emissions, speed optimization, vehicle routing

Procedia PDF Downloads 347
26637 Digital Transformation in Production Planning and Control: Evaluation of the Organizational Readiness

Authors: Tobias Wissing, Peter Burggräf, Johannes Wagner

Abstract:

Cost pressure, competitiveness and the increasing turbulence of globalized saturated markets has been the driver for a variety of research activities in the field of production planning and control (PPC) during the past decades. For some time past an increasing awareness for innovative technologies in terms of Industry 4.0 can be noticed. Although there are many promising approaches a solely installation of those smart solutions will not maximize the PPC performance. To accelerate the successful digital transformation the cooperation between employee and technology also has to be adapted. The existing processes and organizational structures might be not sufficient to maximize the utilization of technological innovations. This paper presents the key results of an extensive study which was conducted by the Laboratory for Machine Tools and Production Engineering (WZL) of the RWTH Aachen University to evaluate the current situation and examine the organizational readiness for this digital transformation.

Keywords: cyber-physical production system, digital transformation, industry 4.0, production planning and control

Procedia PDF Downloads 333
26636 A Case Study of Kick Control in Tough Potohar Region

Authors: Iftikhar Raza

Abstract:

Well control is the management of the hazardous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling. Oil well control is one of the most important aspects of drilling operations. Improper handling of kicks in oil well control can result in blowouts with very grave consequences, including the loss of valuable resources. Even though the cost of a blowout (as a result of improper/no oil well control) can easily reach several millions of US dollars, the monetary loss is not as serious as the other damages that can occur: irreparable damage to the environment, waste of valuable resources, ruined equipment, and most importantly, the safety and lives of personnel on the drilling rig. In this paper, case study of a well is discussed with field data showing the properties of the well. The whole procedure of controlling this well is illustrated in this which may be helpful for professional dealing with such kind of problems.

Keywords: kick control, kill sheet, oil well, gas drilling

Procedia PDF Downloads 488
26635 Inner Quality Parameters of Rapeseed (Brassica napus) Populations in Different Sowing Technology Models

Authors: É. Vincze

Abstract:

Demand on plant oils has increased to an enormous extent that is due to the change of human nutrition habits on the one hand, while on the other hand to the increase of raw material demand of some industrial sectors, just as to the increase of biofuel production. Besides the determining importance of sunflower in Hungary the production area, just as in part the average yield amount of rapeseed has increased among the produced oil crops. The variety/hybrid palette has changed significantly during the past decade. The available varieties’/hybrids’ palette has been extended to a significant extent. It is agreed that rapeseed production demands professionalism and local experience. Technological elements are successive; high yield amounts cannot be produced without system-based approach. The aim of the present work was to execute the complex study of one of the most critical production technology element of rapeseed production, that was sowing technology. Several sowing technology elements are studied in this research project that are the following: biological basis (the hybrid Arkaso is studied in this regard), sowing time (sowing time treatments were set so that they represent the wide period used in industrial practice: early, optimal and late sowing time) plant density (in this regard reaction of rare, optimal and too dense populations) were modelled. The multifactorial experimental system enables the single and complex evaluation of rapeseed sowing technology elements, just as their modelling using experimental result data. Yield quality and quantity have been determined as well in the present experiment, just as the interactions between these factors. The experiment was set up in four replications at the Látókép Plant Production Research Site of the University of Debrecen. Two different sowing times were sown in the first experimental year (2014), while three in the second (2015). Three different plant densities were set in both years: 200, 350 and 500 thousand plants ha-1. Uniform nutrient supply and a row spacing of 45 cm were applied. Winter wheat was used as pre-crop. Plant physiological measurements were executed in the populations of the Arkaso rapeseed hybrid that were: relative chlorophyll content analysis (SPAD) and leaf area index (LAI) measurement. Relative chlorophyll content (SPAD) and leaf area index (LAI) were monitored in 7 different measurement times.

Keywords: inner quality, plant density, rapeseed, sowing time

Procedia PDF Downloads 188