Search results for: series arc fault
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3193

Search results for: series arc fault

2323 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis

Procedia PDF Downloads 188
2322 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 203
2321 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame

Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin

Abstract:

The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.

Keywords: FACTS, multi-space-time frame, optimal control, TCSC

Procedia PDF Downloads 267
2320 Evaluating the Effect of Spatial Qualities, Openness and Complexity, on Human Cognitive Performance within Virtual Reality

Authors: Pierre F. Gerard, Frederic F. Leymarie, William Latham

Abstract:

Architects have developed a series of objective evaluations, using spatial analysis tools such as Isovist, that show how certain spatial qualities are beneficial to specific human activities hosted in the built environments. In return, they can build more adapted environments by tuning those spatial qualities in their design. In parallel, virtual reality technologies have been developed by engineers with the dream of creating a system that immerses users in a new form of spatial experiences. They already have demonstrated a useful range of benefits not only in simulating critical events to assist people in acquiring new skills, but also to enhance memory retention, to name just a few. This paper investigates the effects of two spatial qualities, openness, and complexity, on cognitive performance within immersive virtual environments. Isovist measure is used to design a series of room settings with different levels of each spatial qualities. In an empirical study, each room was then used by every participant to solve a navigational puzzle game and give a rating of their spatial experience. They were then asked to fill in a questionnaire before solving the visual-spatial memory quiz, which addressed how well they remembered the different rooms. Findings suggest that those spatial qualities have an effect on some of the measures, including navigation performance and memory retention. In particular, there is an order effect for the navigation puzzle game. Participants tended to spend a longer time in the complex room settings. Moreover, there is an interaction effect while with more open settings, participants tended to perform better when in a simple setting; however, with more closed settings, participants tended to perform better in a more complex setting. For the visual-spatial memory quiz, participants performed significantly better within the more open rooms. We believe this is a first step in using virtual environments to enhance participant cognitive performances through better use of specific spatial qualities.

Keywords: architecture, navigation, spatial cognition, virtual reality

Procedia PDF Downloads 130
2319 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 265
2318 Climate Change and Dengue Transmission in Lahore, Pakistan

Authors: Sadia Imran, Zenab Naseem

Abstract:

Dengue fever is one of the most alarming mosquito-borne viral diseases. Dengue virus has been distributed over the years exponentially throughout the world be it tropical or sub-tropical regions of the world, particularly in the last ten years. Changing topography, climate change in terms of erratic seasonal trends, rainfall, untimely monsoon early or late and longer or shorter incidences of either summer or winter. Globalization, frequent travel throughout the world and viral evolution has lead to more severe forms of Dengue. Global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. In recent years, Pakistan experienced a deadly outbreak of the disease. The reason could be that they have the maximum exposure outdoors. Public organizations have observed that changing climate, especially lower average summer temperature, and increased vegetation have created tropical-like conditions in the city, which are suitable for Dengue virus growth. We will conduct a time-series analysis to study the interrelationship between dengue incidence and diurnal ranges of temperature and humidity in Pakistan, Lahore being the main focus of our study. We have used annual data from 2005 to 2015. We have investigated the relationship between climatic variables and dengue incidence. We used time series analysis to describe temporal trends. The result shows rising trends of Dengue over the past 10 years along with the rise in temperature & rainfall in Lahore. Hence this seconds the popular statement that the world is suffering due to Climate change and Global warming at different levels. Disease outbreak is one of the most alarming indications of mankind heading towards destruction and we need to think of mitigating measures to control epidemic from spreading and enveloping the cities, countries and regions.

Keywords: Dengue, epidemic, globalization, climate change

Procedia PDF Downloads 233
2317 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 207
2316 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand

Authors: Sudip Kumar Kundu, Charu Singh

Abstract:

As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.

Keywords: global warming, rainfall, CMIP5, CORDEX, NWH

Procedia PDF Downloads 169
2315 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models

Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan

Abstract:

This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.

Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk

Procedia PDF Downloads 99
2314 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe

Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani

Abstract:

Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.

Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses

Procedia PDF Downloads 385
2313 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms

Authors: Mosaad Khadr

Abstract:

Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.

Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula

Procedia PDF Downloads 170
2312 Triplex Detection of Pistacia vera, Arachis hypogaea and Pisum sativum in Processed Food Products Using Probe Based PCR

Authors: Ergün Şakalar, Şeyma Özçirak Ergün, Emrah Yalazi̇, Emine Altinkaya, Cengiz Ataşoğlu

Abstract:

In recent years, food allergies which cause serious health problems affect to public health around the world. Foodstuffs which contain allergens are either intentionally used as ingredients or are encased as contaminant in food products. The prevalence of clinical allergy to peanuts and nuts is estimated at about 0.4%-1.1% of the adult population, representing the allergy to pistachio the 7% of the cases of tree nut causing allergic reactions. In order to protect public health and enforce the legislation, methods for sensitive analysis of pistachio and peanut contents in food are required. Pea, pistachio and peanut are used together, to reduce the cost in food production such as baklava, snack foods.DNA technology-based methods in food analysis are well-established and well-roundedtools for species differentiation, allergen detection. Especially, the probe-based TaqMan real-time PCR assay can amplify target DNA with efficiency, specificity, and sensitivity.In this study, pistachio, peanut and pea were finely ground and three separate series of triplet mixtures containing 0.1, 1, 10, 100, 1000, 10,000 and 100,000 mg kg-1 of each sample were prepared for each series, to a final weight of 100 g. DNA from reference samples and industrial products was successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. TaqMan probes were designed for triplex determination of ITS, Ara h 3 and pea lectin genes which are specific regions for identification pistachio, peanut and pea, respectively.The real-time PCR as quantitative detected pistachio, peanut and pea in these mixtures down to the lowest investigated level of 0.1, 0.1 and 1 mg kg-1, respectively. Also, the methods reported here are capable of detecting of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA. We accomplish that the quantitative triplex real-time PCR method developed in this study canbe applied to detect pistachio, peanut and peatraces for three allergens at once in commercial food products.

Keywords: allergens, DNA, real-time PCR, TaqMan probe

Procedia PDF Downloads 255
2311 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology

Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal

Abstract:

Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.

Keywords: urology, surgical innovation, novel surgical techniques, publications

Procedia PDF Downloads 49
2310 Bacterial Causes of Cerebral Abscess and Impact on Long Term Patient Outcomes

Authors: Umar Rehman, Holly Roy, K. T. Tsang, D. S. Jeyaretna, W Singleton, B. Fisher, P. A. Glew, J. Greig, Peter C. Whitfield

Abstract:

Introduction: A brain abscess is a life-threatening condition, carrying significant mortality. It requires rapid identification and treatment. Management involves a combination of antibiotics and surgery. The aim of the current study was to identify common bacteria responsible for cerebral abscesses as well as the long term functional and neurological outcomes of patients following treatment in a retrospective series at a single UK neurosurgical centre. Methodology: We analysed patients that had received a diagnosis of 'cerebral abscess' or 'subdural empyema' between June 2002 and June 2018. This was done in the form of a retrospective review. The search resulted in a total of 180 patients; with 37 patients being excluded (spinal abscess, below 18 or non-abscess related admissions). Data were collected from medical case notes including information about demographics, comorbidities, immunosuppression, presentation, size/location of lesions, pathogens, treatment, and outcomes. Results: In total, we analysed 143 patients between the ages of 18-90. Focal neurological deficit and headaches were seen in 84% and 68% of patients respectively. 108 positive brain cultures were seen; with the largest proportion, 59.2% being gram-positive cocci, with strep intermedius being the most common pathogen identified in 13.9% of patients. Of the patients with positive blood cultures (n=11), 72.7% showed the same organism both in the blood and on the brain cultures. Long term outcomes (n=72) revealed that 48% of patients seizure-free without requiring anti-epileptics, 51.3% of patients had full recovery of their neurological symptoms. There was a mortality rate of 13.9% in the series. Conclusion: In conclusion, the largest bacterial cause of abscess within our population was due to gram-positive cocci. The majority of the patient demonstrated full neurological recovery with close to half of patients not requiring anti-epileptics following discharge.

Keywords: bacteria, cerebral abscess, long term outcome, neurological deficit

Procedia PDF Downloads 119
2309 Analysis of Kinetin Supramolecular Complex with Glytsirrizinic Acid and Based by Mass-Spectrometry Method

Authors: Bakhtishod Matmuratov, Sakhiba Madraximova, Rakhmat Esanov, Alimjan Matchanov

Abstract:

Studies have been performed to obtain complexes of glycyrrhizic acid and kinetins in a 2:1 ratio. The complex of glycyrrhizic acid and kinetins in a 2:1 ratio was considered evidence of the formation of a molecular complex by determining the molecular masses using chromato-mass spectroscopy and analyzing the IR spectra.

Keywords: monoammonium salt of glycyrrhizic acid, glycyrrhizic acid, supramolecular complex, isomolar series, IR spectroscopy

Procedia PDF Downloads 177
2308 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 114
2307 Examining Customer Acceptance of Chatbots in B2B Customer Service: A Factorial Survey

Authors: Kathrin Endres, Daniela Greven

Abstract:

Although chatbots are a widely known and established communication instrument in B2C customer services, B2B industries still hesitate to implement chatbots due to the incertitude of customer acceptance. While many studies examine the chatbot acceptance of B2C consumers, few studies are focusing on the B2B sector, where the customer is represented by a buying center consisting of several stakeholders. This study investigates the challenges of chatbot acceptance in B2B industries compared to challenges of chatbot acceptance from current B2C literature by interviewing experts from German chatbot vendors. The results show many similarities between the customer requirements of B2B customers and B2C consumers. Still, due to several stakeholders involved in the buying center, the features of the chatbot users are more diverse but obfuscated at the same time. Using a factorial survey, this study further examines the customer acceptance of varying situations of B2B chatbot designs based on the chatbot variables transparency, fault tolerance, complexity of products, value of products, as well as transfer to live chat service employees. The findings show that all variables influence the propensity to use the chatbot. The results contribute to a better understanding of how firms in B2B industries can design chatbots to advance their customer service and enhance customer satisfaction.

Keywords: chatbots, technology acceptance, B2B customer service, customer satisfaction

Procedia PDF Downloads 124
2306 Protection System Mis-operations: Fundamental Concepts and Learning from Indian Power Sector

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh

Abstract:

Protection system is an essential feature of the electrical system which helps in detection and removal of faults. Protection system consists of many subsystems like relays, circuit breakers, instrument transformers, auxiliary DC system, auxiliary relays etc. Although the fundamental protective and relay operating concepts are similar throughout the world, there are very significant differences in their implementation. These differences arise through different traditions, operating philosophies, experiences and national standards. Protection system mis-operation due to problem in one or more of its subsystem or inadequate knowledge of numerical relay settings and configuration are very common throughout the world. Protection system mis-operation leads to unstable and unreliable grid operation. In this paper we will discuss about the fundamental concepts of protective relaying and the reasons for protection system mis-operation due to one or more of its subsystems. Many real-world case studies of protection system mis-operation from Indian power sector are discussed in detail in this paper.

Keywords: auxiliary trip relays, bus zone, check zone, CT saturation, dead zone protection, DC ground faults, DMT, DR, end fault protection, instrument transformer, SOTF, STUB

Procedia PDF Downloads 76
2305 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life

Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli

Abstract:

Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.

Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery

Procedia PDF Downloads 124
2304 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China

Authors: Yiyuan Tao

Abstract:

Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.

Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin

Procedia PDF Downloads 124
2303 A Novel Approach towards Test Case Prioritization Technique

Authors: Kamna Solanki, Yudhvir Singh, Sandeep Dalal

Abstract:

Software testing is a time and cost intensive process. A scrutiny of the code and rigorous testing is required to identify and rectify the putative bugs. The process of bug identification and its consequent correction is continuous in nature and often some of the bugs are removed after the software has been launched in the market. This process of code validation of the altered software during the maintenance phase is termed as Regression testing. Regression testing ubiquitously considers resource constraints; therefore, the deduction of an appropriate set of test cases, from the ensemble of the entire gamut of test cases, is a critical issue for regression test planning. This paper presents a novel method for designing a suitable prioritization process to optimize fault detection rate and performance of regression test on predefined constraints. The proposed method for test case prioritization m-ACO alters the food source selection criteria of natural ants and is basically a modified version of Ant Colony Optimization (ACO). The proposed m-ACO approach has been coded in 'Perl' language and results are validated using three examples by computation of Average Percentage of Faults Detected (APFD) metric.

Keywords: regression testing, software testing, test case prioritization, test suite optimization

Procedia PDF Downloads 338
2302 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
2301 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 513
2300 Research and Development of Net-Centric Information Sharing Platform

Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong

Abstract:

Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.

Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control

Procedia PDF Downloads 570
2299 Searchable Encryption in Cloud Storage

Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption

Procedia PDF Downloads 383
2298 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis

Procedia PDF Downloads 262
2297 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers

Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh

Abstract:

Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.

Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers

Procedia PDF Downloads 210
2296 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim

Abstract:

This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: aftershock, composite material, GFRP, infill panel

Procedia PDF Downloads 334
2295 Psychological Factors Predicting Social Distance during the COVID-19 Pandemic: An Empirical Investigation

Authors: Calogero Lo Destro

Abstract:

Numerous nations around the world are facing exceptional challenges in employing measures to stop the spread of COVID-19. Following the recommendations of the World Health Organization, a series of preventive measures have been adopted. However, individuals must comply with these rules and recommendations in order to make these measures effective. While COVID-19 was climaxing, it seemed of crucial importance to analyze which psychosocial factors contribute to the acceptance of such preventive behavior, thus favoring the management of COVID-19 worldwide health crisis. In particular, the identification of aspects related to obstacles and facilitation of adherence to social distancing has been considered crucial in the containment of the virus spread. Since the virus was firstly detected in China, Asian people could be considered a relevant outgroup targeted for exclusion. We also hypothesized social distance could be influenced by characteristics of the target, such as smiling or coughing. 260 participants participated in this research on a voluntary basis. They filled a survey designed to explore a series of COVID-19 measures (such as exposure to virus and fear of infection). We also assessed participants state and trait anxiety. The dependent variable was social distance, based on a measure of seating distance designed ad hoc for the present work. Our hypothesis that participants could report greater distance in response to Asian people was not confirmed. On the other hand, significantly lower distance in response to smiling compared to coughing targets was reported. Adopting a regression analysis model, we found that participants' social distance, in response to both coughing and smiling targets, was predicted by fear of infection and by the perception COVID-19 could become a pandemic. Social distance in response to the coughing target was also significantly and positively predicted by age and state anxiety. In summary, the present work has sought to identify a set of psychological variables, which may still be predictive of social distancing.

Keywords: COVID-19, social distancing, health, preventive behaviors, risk of infection

Procedia PDF Downloads 123
2294 Design, Synthesis and in-vitro Antitumor Evaluation of Some Novel Substituted Quinazoline Derivatives

Authors: Adel S. El-Azab, Alaa A. M. Abdel-Aziz, Ibrahim A. Al-Suwaidan, Amer M. Alanazi

Abstract:

A novel series of 2,3,6-trisubstitute quinazolinone were designed, synthesized, and evaluated for their in-vitro antitumor activity. 3 (Benzylideneamino)-6-chloro-2-p-tolylquinazolin-4(3H)-One, 2-[(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-yl)thio]-N-(3,4;5-trimethoxyphenyl) acetamide and 3-(3-benzyl-6-methyl-4-oxo-3, 4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl) propanamide have shown amazing broad spectrum antitumor activity with mean GI50; 15.8, 3.16, and 7.4 μM respectively compared to known Quinazoline Derivatives antitumor drug 5-FU mean GI50=22.6 μM.

Keywords: quinazoline derivatives, in vitro antitumor, synthesis, 5-FU, NCI

Procedia PDF Downloads 544