Search results for: scientific models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8628

Search results for: scientific models

7758 Estimating the Probability of Winning the Best Actor/Actress Award Conditional on the Best Picture Nomination with Bayesian Hierarchical Models

Authors: Svetlana K. Eden

Abstract:

Movies and TV shows have long become part of modern culture. We all have our preferred genre, story, actors, and actresses. However, can we objectively discern good acting from the bad? As laymen, we are probably not objective, but what about the Oscar academy members? Are their votes based on objective measures? Oscar academy members are probably also biased due to many factors, including their professional affiliations or advertisement exposure. Heavily advertised films bring more publicity to their cast and are likely to have bigger budgets. Because a bigger budget may also help earn a Best Picture (BP) nomination, we hypothesize that best actor/actress (BA) nominees from BP-nominated movies would have higher chances of winning the award than those BA nominees from non-BP-nominated films. To test this hypothesis, three Bayesian hierarchical models are proposed, and their performance is evaluated. The results from all three models largely support our hypothesis. Depending on the proportion of BP nominations among BA nominees, the odds ratios (estimated over expected) of winning the BA award conditional on BP nomination vary from 2.8 [0.8-7.0] to 4.3 [2.0, 15.8] for actors and from 1.5 [0.0, 12.2] to 5.4 [2.7, 14.2] for actresses.

Keywords: Oscar, best picture, best actor/actress, bias

Procedia PDF Downloads 223
7757 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review

Authors: Hami Ashraf, Mohammad Heydarnejad

Abstract:

Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.

Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model

Procedia PDF Downloads 51
7756 Door Fan Test in New CED at Portopalo Test Site

Authors: F. Noto, M. Castro, R. Garraffo, An. Mirabella, A. Rizzo, G. Cuttone

Abstract:

The door fan test is a verification procedure on the tightness of a room, necessary following the installation of saturation extinguishing systems and made mandatory according to the UNI 15004-1: 2019 standard whenever a gas extinguishing system is designed and installed. The door fan test was carried out at the Portopalo di Capo Passero headquarters of the Southern National Laboratories and highlighted how the Data Processing Center is perfectly up to standard, passing the door fan test in an excellent way. The Southern National Laboratories constitute a solid research reality, well established in the international scientific panorama. The CED in the Portopalo site has been expanded, so the extinguishing system has been expanded according to a detailed design. After checking the correctness of the design to verify the absence of air leaks, we carried out the door fan test. The activities of the LNS are mainly aimed at basic research in the field of Nuclear Physics, Nuclear and Particle Astrophysics. The Portopalo site will host some of the largest submarine wired scientific research infrastructures built in Europe and in the world, such as KM3NeT and EMSO ERIC; in particular, the site research laboratory in Portopalo will host the power supply and data acquisition systems of the underwater infrastructures, and a technological backbone will be created, unique in the Mediterranean, capable of allowing the connection, at abyssal depths, of dozens of real-time surveying and research structures of the marine environment deep.

Keywords: KM3Net, fire protection, door fan test, CED

Procedia PDF Downloads 99
7755 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 74
7754 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model

Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi

Abstract:

Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.

Keywords: flight control clearance, LFR, stability analysis, robustness analysis

Procedia PDF Downloads 352
7753 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework

Authors: Nicola Rubino

Abstract:

This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.

Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points

Procedia PDF Downloads 278
7752 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics

Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim

Abstract:

A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.

Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic

Procedia PDF Downloads 129
7751 Impact of the Hayne Royal Commission on the Operating Model of Australian Financial Advice Firms

Authors: Mohammad Abu-Taleb

Abstract:

The final report of the Royal Commission into Australian financial services misconduct, released in February 2019, has had a significant impact on the financial advice industry. The recommendations released in the Commissioner’s final report include changes to ongoing fee arrangements, a new disciplinary system for financial advisers, and mandatory reporting of compliance concerns. This thesis aims to explore the impact of the Royal Commission’s recommendations on the operating model of financial advice firms in terms of advice products, processes, delivery models, and customer segments. Also, this research seeks to investigate whether the Royal Commission’s outcome has accelerated the use of enhanced technology solutions within the operating model of financial advice firms. And to identify the key challenges confronting financial advice firms whilst implementing the Commissioner’s recommendations across their operating models. In order to achieve the objectives of this thesis, a qualitative research design has been adopted through semi-structured in-depth interviews with 24 financial advisers and managers who are engaged in the operation of financial advice services. The study used the thematic analysis approach to interpret the qualitative data collected from the interviews. The findings of this thesis reveal that customer-centric operating models will become more prominent across the financial advice industry in response to the Commissioner’s final report. And the Royal Commission’s outcome has accelerated the use of advice technology solutions within the operating model of financial advice firms. In addition, financial advice firms have started more than before using simpler and more automated web-based advice services, which enable financial advisers to provide simple advice in a greater scale, and also to accelerate the use of robo-advice models and digital delivery to mass customers in the long term. Furthermore, the study identifies process and technology changes as, long with technical and interpersonal skills development, as the key challenges encountered financial advice firms whilst implementing the Commissioner’s recommendations across their operating models.

Keywords: hayne royal commission, financial planning advice, operating model, advice products, advice processes, delivery models, customer segments, digital advice solutions

Procedia PDF Downloads 88
7750 Cognitive Models of Future in Political Texts

Authors: Solopova Olga

Abstract:

The present paper briefly recalls theoretical preconditions for investigating cognitive-discursive models of future in political discourse. The author reviews theories and methods used for strengthening a future focus in this discourse working out two main tools – a model of future and a metaphorical scenario. The paper examines the implications of metaphorical analogies for modeling future in mass media. It argues that metaphor is not merely a rhetorical ornament in the political discourse of media regulation but a conceptual model that legislates and regulates our understanding of future.

Keywords: cognitive approach, future research, political discourse, model, scenario, metaphor

Procedia PDF Downloads 394
7749 Applications of Nonlinear Models to Measure and Predict Thermo Physical Properties of Binary Liquid Mixtures1, 4 Dioxane with Bromo Benzene at Various Temperatures

Authors: R. Ramesh, M. Y. M. Yunus, K. Ramesh

Abstract:

The study conducted in this research are Viscosities, η, and Densities ,ρ, of 1, 4-dioxane with Bromobenzene at different mole fractions and various temperatures in the atmospheric pressure condition. From experimentations excess volumes, VE, and deviations in viscosities, Δη, of mixtures at infinite dilutions have been obtained. The measured systems exhibited positive values of VmE and negative values of Δη. The binary mixture 1, 4 dioxane + Bromobenzene show positive VE and negative Δη with increasing temperatures. The outcomes clearly indicate that weak interactions present in mixture. It is mainly because of number and position of methyl groups exist in these aromatic hydrocarbons. These measured data tailored to the nonlinear models to derive the binary coefficients. Standard deviations have been considered between the fitted outcomes and the calculated data is helpful deliberate mixing behavior of the binary mixtures. It can conclude that in our cases, the data found with the values correlated by the corresponding models very well. The molecular interactions existing between the components and comparison of liquid mixtures were also discussed.

Keywords: 1, 4 dioxane, bromobenzene, density, excess molar volume

Procedia PDF Downloads 412
7748 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts

Authors: Atoum Abdullah

Abstract:

The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.

Keywords: animation, narration, science, teaching

Procedia PDF Downloads 170
7747 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term

Authors: Rajendra Kumar Dubey

Abstract:

Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.

Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ

Procedia PDF Downloads 528
7746 Design of Evaluation for Ehealth Intervention: A Participatory Study in Italy, Israel, Spain and Sweden

Authors: Monika Jurkeviciute, Amia Enam, Johanna Torres Bonilla, Henrik Eriksson

Abstract:

Introduction: Many evaluations of eHealth interventions conclude that the evidence for improved clinical outcomes is limited, especially when the intervention is short, such as one year. Often, evaluation design does not address the feasibility of achieving clinical outcomes. Evaluations are designed to reflect upon clinical goals of intervention without utilizing the opportunity to illuminate effects on organizations and cost. A comprehensive design of evaluation can better support decision-making regarding the effectiveness and potential transferability of eHealth. Hence, the purpose of this paper is to present a feasible and comprehensive design of evaluation for eHealth intervention, including the design process in different contexts. Methodology: The situation of limited feasibility of clinical outcomes was foreseen in the European Union funded project called “DECI” (“Digital Environment for Cognitive Inclusion”) that is run under the “Horizon 2020” program with an aim to define and test a digital environment platform within corresponding care models that help elderly people live independently. A complex intervention of eHealth implementation into elaborate care models in four different countries was planned for one year. To design the evaluation, a participative approach was undertaken using Pettigrew’s lens of change and transformations, including context, process, and content. Through a series of workshops, observations, interviews, and document analysis, as well as a review of scientific literature, a comprehensive design of evaluation was created. Findings: The findings indicate that in order to get evidence on clinical outcomes, eHealth interventions should last longer than one year. The content of the comprehensive evaluation design includes a collection of qualitative and quantitative methods for data gathering which illuminates non-medical aspects. Furthermore, it contains communication arrangements to discuss the results and continuously improve the evaluation design, as well as procedures for monitoring and improving the data collection during the intervention. The process of the comprehensive evaluation design consists of four stages: (1) analysis of a current state in different contexts, including measurement systems, expectations and profiles of stakeholders, organizational ambitions to change due to eHealth integration, and the organizational capacity to collect data for evaluation; (2) workshop with project partners to discuss the as-is situation in relation to the project goals; (3) development of general and customized sets of relevant performance measures, questionnaires and interview questions; (4) setting up procedures and monitoring systems for the interventions. Lastly, strategies are presented on how challenges can be handled during the design process of evaluation in four different countries. The evaluation design needs to consider contextual factors such as project limitations, and differences between pilot sites in terms of eHealth solutions, patient groups, care models, national and organizational cultures and settings. This implies a need for the flexible approach to evaluation design to enable judgment over the effectiveness and potential for adoption and transferability of eHealth. In summary, this paper provides learning opportunities for future evaluation designs of eHealth interventions in different national and organizational settings.

Keywords: ehealth, elderly, evaluation, intervention, multi-cultural

Procedia PDF Downloads 324
7745 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
7744 Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants

Authors: Robert van Ling, Alexander Schwahn, Shanhua Lin, Ken Cook, Frank Steiner, Rowan Moore, Mauro de Pra

Abstract:

Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput.

Keywords: charge variants, ion exchange chromatography, monoclonal antibody, UHPLC

Procedia PDF Downloads 440
7743 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation

Authors: Mounia El Hafyani, Khalid El Himdi

Abstract:

Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.

Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations

Procedia PDF Downloads 125
7742 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 123
7741 Stress Analysis of Vertebra Using Photoelastic and Finite Element Methods

Authors: Jamal A. Hassan, Ali Q. Abdulrazzaq, Sadiq J. Abass

Abstract:

In this study, both the photoelastic, as well as the finite element methods, are used to study the stress distribution within human vertebra (L4) under forces similar to those that occur during normal life. Two & three dimensional models of vertebra were created by the software AutoCAD. The coordinates obtained were fed into a computer numerical control (CNC) tensile machine to fabricate the models from photoelastic sheets. Completed models were placed in a transmission polariscope and loaded with static force (up to 1500N). Stresses can be quantified and localized by counting the number of fringes. In both methods the Principle stresses were calculated at different regions. The results noticed that the maximum von-mises stress on the area of the extreme superior vertebral body surface and the facet surface with high normal stress (σ) and shear stress (τ). The facets and other posterior elements have a load-bearing function to help support the weight of the upper body and anything that it carries, and are also acted upon by spinal muscle forces. The numerical FE results have been compared with the experimental method using photoelasticity which shows good agreement between experimental and simulation results.

Keywords: photoelasticity, stress, load, finite element

Procedia PDF Downloads 286
7740 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 62
7739 Experimental Setup of Corona Discharge on Dye Degradation for Science Education

Authors: Shivam Dubey, Vinit Srivastava, Abhay Singh Thakur, Rahul Vaish

Abstract:

The presence of organic dyes in water is a critical issue that poses a significant threat to the environment and human health. We have investigated the use of corona discharge as a potential method for degrading organic dyes in water. Methylene Blue dye was exposed to corona discharge, and its photo-absorbance was measured over time to determine the extent of degradation. The results depicted a decreased absorbance for the dye and the loss of the characteristic colour of methylene blue. The effects of various parameters, including current, voltage, gas phase, salinity, and electrode spacing, on the reaction rates, were investigated. The highest reaction rates were observed at the highest current and voltage (up to 10kV), lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. These findings have possible applications for science education curriculum. By investigating the use of corona discharge for destroying organic dyes, we can provide students with a practical application of scientific principles that they can apply to real-world problems. This research can demonstrate the importance of understanding the chemical and physical properties of organic dyes and the effects of corona discharge on their degradation and provide a holistic understanding of the applications of scientific research. Moreover, our study also emphasizes the importance of considering the various parameters that can affect reaction rates. By investigating the effects of current, voltage, matter phase, salinity, and electrode spacing, we can provide students with an opportunity to learn about the importance of experimental design and how to evade constraints that can limit meaningful results. In conclusion, this study has the potential to provide valuable insights into the use of corona discharge for destroying organic dyes in water and has significant implications for science education. By highlighting the practical applications of scientific principles, experimental design, and the importance of considering various parameters, this research can help students develop critical thinking skills and prepare them for future careers in science and engineering.

Keywords: dye degradation, corona discharge, science education, hands-on learning, chemical education

Procedia PDF Downloads 69
7738 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 415
7737 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 133
7736 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 349
7735 Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model

Authors: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Jan Jäckel, Andreas Gebauer-Teichmann

Abstract:

This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper.

Keywords: CFD, fluid-structure interaction, high-pressure die casting, multiphase flow

Procedia PDF Downloads 332
7734 Emotional Security in Relation to Students' Emotional Efficiency

Authors: Ibtisam Mahmoud Mohammed Sultan

Abstract:

The present research aimed to identify the level of both emotional and emotional competence among students in Tikrit University aimed to know the assumptions in statistical significance for both variables as gender variables (m-f) and specialty (scientific-humanistic), as research to learn what Relationship between emotional safety and efficiency alanfaalet Tikrit University students. The researcher built emotional security measure (54) as built measure emotional competence (46), as the researcher extract full alsaykomtrih characteristics of both scales. The research sample consisted of (600) students selected by the random way and applying the scales on a basic search sample and processed statistical data using a variety of methods, including statistical test (test T.) and Pearson correlation coefficient, the researcher found a set of results. The following: 1. that the Tikrit University students possess a high level of emotional security. 2. to safely enjoy passionate males more than females. 3. that there is no difference between students of scientific and humanitarian specialization in variable emotional security. 4. that the Tikrit University students enjoy a high level of emotional competence. 5. the female-male outperforming in emotional competence level. 6. the humanitarian specialization students Excel in emotional competence for those of specialty. 7. the existence of a positive correlation between variables. Through search results, the researcher has developed a set of conclusions, proposals, and recommendations.

Keywords: relation, emotional security, students, efficiency

Procedia PDF Downloads 120
7733 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 72
7732 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System

Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe

Abstract:

Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.

Keywords: constitutive model, polymer, mechanical testing, wrapping system

Procedia PDF Downloads 293
7731 Grading Histopathology Features of Graft-Versus-Host Disease in Animal Models; A Systematic Review

Authors: Hami Ashraf, Farid Kosari

Abstract:

Graft-versus-host disease (GvHD) is a common complication of allogeneic hematopoietic stem cell transplantation that can lead to significant morbidity and mortality. Histopathological examination of affected tissues is an essential tool for diagnosing and grading GvHD in animal models, which are used to study disease mechanisms and evaluate new therapies. In this systematic review, we identified and analyzed original research articles in PubMed, Scopus, Web of Science, and Google Scholar that described grading systems for GvHD in animal models based on histopathological features. We found that several grading systems have been developed, which vary in the tissues and criteria they assess, the severity scoring scales they use, and the level of detail they provide. Skin, liver, and gut are the most commonly evaluated tissues, but lung and thymus are also included in some systems. Our analysis highlights the need for standardized criteria and consistent use of grading systems to enable comparisons between studies and facilitate the translation of preclinical findings to clinical practice.

Keywords: graft-versus-host disease, GvHD, animal model, histopathology, grading system

Procedia PDF Downloads 64
7730 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 387
7729 A New Mathematical Model of Human Olfaction

Authors: H. Namazi, H. T. N. Kuan

Abstract:

It is known that in humans, the adaptation to a given odor occurs within a quite short span of time (typically one minute) after the odor is presented to the brain. Different models of human olfaction have been developed by scientists but none of these models consider the diffusion phenomenon in olfaction. A novel microscopic model of the human olfaction is presented in this paper. We develop this model by incorporating the transient diffusivity. In fact, the mathematical model is written based on diffusion of the odorant within the mucus layer. By the use of the model developed in this paper, it becomes possible to provide quantification of the objective strength of odor.

Keywords: diffusion, microscopic model, mucus layer, olfaction

Procedia PDF Downloads 505