Search results for: multiple equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6508

Search results for: multiple equations

5638 Vibration Imaging Method for Vibrating Objects with Translation

Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii

Abstract:

We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.

Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation

Procedia PDF Downloads 108
5637 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 120
5636 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures

Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin

Abstract:

A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.

Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material

Procedia PDF Downloads 323
5635 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission

Procedia PDF Downloads 197
5634 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.

Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods

Procedia PDF Downloads 37
5633 MMSE-Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel

Authors: Sherif K. El Dyasti, Esam A. Hagras, Adel E. El-Hennawy

Abstract:

This paper addresses the performance of antenna array beam-forming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper, we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel.

Keywords: aeronautical channel, CI-CDMA, beamforming, communication, information

Procedia PDF Downloads 419
5632 The Potential Factors Relating to the Decision of Return Migration of Myanmar Migrant Workers: A Case Study in Prachuap Khiri Khan Province

Authors: Musthaya Patchanee

Abstract:

The aim of this research is to study potential factors relating to the decision of return migration of Myanmar migrant workers in Prachuap Khiri Khan Province by conducting a random sampling of 400 people aged between 15-59 who migrated from Myanmar. The information collected through interviews was analyzed to find a percentage and mean using the Stepwise Multiple Regression Analysis. The results have shown that 33.25% of Myanmar migrant workers want to return to their home country within the next 1-5 years, 46.25%, in 6-10 years and the rest, in over 10 years. The factors relating to such decision can be concluded that the scale of the decision of return migration has a positive relationship with a statistical significance at 0.05 with a conformity with friends and relatives (r=0.886), a relationship with family and community (r=0.782), possession of land in hometown (r=0.756) and educational level (r=0.699). However, the factor of property possession in Prachuap Khiri Khan is the only factor with a high negative relationship (r=0.-537). From the Stepwise Multiple Regression Analysis, the results have shown that the conformity with friends and relatives and educational level factors are influential to the decision of return migration of Myanmar migrant workers in Prachuap Khiri Khan Province, which can predict the decision at 86.60% and the multiple regression equation from the analysis is Y= 6.744+1.198 conformity + 0.647 education.

Keywords: decision of return migration, factors of return migration, Myanmar migrant workers, Prachuap Khiri Khan Province

Procedia PDF Downloads 541
5631 Fluidised Bed Gasification of Multiple Agricultural Biomass-Derived Briquettes

Authors: Rukayya Ibrahim Muazu, Aiduan Li Borrion, Julia A. Stegemann

Abstract:

Biomass briquette gasification is regarded as a promising route for efficient briquette use in energy generation, fuels and other useful chemicals, however, previous research work has focused on briquette gasification in fixed bed gasifiers such as updraft and downdraft gasifiers. Fluidised bed gasifier has the potential to be effectively sized for medium or large scale. This study investigated the use of fuel briquettes produced from blends of rice husks and corn cobs biomass residues, in a bubbling fluidised bed gasifier. The study adopted a combination of numerical equations and Aspen Plus simulation software to predict the product gas (syngas) composition based on briquette's density and biomass composition (blend ratio of rice husks to corn cobs). The Aspen Plus model was based on an experimentally validated model from the literature. The results based on a briquette size of 32 mm diameter and relaxed density range of 500 to 650 kg/m3 indicated that fluidisation air required in the gasifier increased with an increase in briquette density, and the fluidisation air showed to be the controlling factor compared with the actual air required for gasification of the biomass briquettes. The mass flowrate of CO2 in the predicted syngas composition, increased with an increase in the air flow rate, while CO production decreased and H2 was almost constant. The H2/CO ratio for various blends of rice husks and corn cobs did not significantly change at the designed process air, but a significant difference of 1.0 for H2/CO ratio was observed at higher air flow rate, and between 10/90 to 90/10 blend ratio of rice husks to corn cobs. This implies the need for further understanding of biomass variability and hydrodynamic parameters on syngas composition in biomass briquette gasification.

Keywords: aspen plus, briquettes, fluidised bed, gasification, syngas

Procedia PDF Downloads 458
5630 Computational Modeling of Heat Transfer from a Horizontal Array Cylinders for Low Reynolds Numbers

Authors: Ovais U. Khan, G. M. Arshed, S. A. Raza, H. Ali

Abstract:

A numerical model based on the computational fluid dynamics (CFD) approach is developed to investigate heat transfer across a longitudinal row of six circular cylinders. The momentum and energy equations are solved using the finite volume discretization technique. The convective terms are discretized using a second-order upwind methodology, whereas diffusion terms are discretized using a central differencing scheme. The second-order implicit technique is utilized to integrate time. Numerical simulations have been carried out for three different values of free stream Reynolds number (ReD) 100, 200, 300 and two different values of dimensionless longitudinal pitch ratio (SL/D) 1.5, 2.5 to demonstrate the fluid flow and heat transfer behavior. Numerical results are validated with the analytical findings reported in the literature and have been found to be in good agreement. The maximum percentage error in values of the average Nusselt number obtained from the numerical and analytical solutions is in the range of 10% for the free stream Reynolds number up to 300. It is demonstrated that the average Nusselt number for the array of cylinders increases with increasing the free stream Reynolds number and dimensionless longitudinal pitch ratio. The information generated would be useful in the design of more efficient heat exchangers or other fluid systems involving arrays of cylinders.

Keywords: computational fluid dynamics, array of cylinders, longitudinal pitch ratio, finite volume method, incompressible navier-stokes equations

Procedia PDF Downloads 85
5629 Urbanization in Delhi: A Multiparameter Study

Authors: Ishu Surender, M. Amez Khair, Ishan Singh

Abstract:

Urbanization is a multidimensional phenomenon. It is an indication of the long-term process for the shift of economics to industrial from rural. The significance of urbanization in modernization, socio-economic development, and poverty eradication is relevant in modern times. This paper aims to study the urbanization index model in the capital of India, Delhi using aspects such as demographic aspect, infrastructural development aspect, and economic development aspect. The urbanization index of all the nine districts of Delhi will be determined using multiple parameters such as population density and the availability of health and education facilities. The definition of the urban area varies from city to city and requires periodic classification which makes direct comparisons difficult. The urbanization index calculated in this paper can be employed to measure the urbanization of a district and compare the level of urbanization in different districts.

Keywords: multiparameter, population density, multiple regression, normalized urbanization index

Procedia PDF Downloads 114
5628 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites

Procedia PDF Downloads 385
5627 Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis

Authors: Mateusz Paszko, Ksenia Siadkowska

Abstract:

Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines.

Keywords: aviation, CFD analysis, ejective-cooler, helicopter techniques

Procedia PDF Downloads 334
5626 Role of Community Participation in Sustainability of Projects: A Multiple Case Study of Developmental Projects in Khyber Pakhtunkhwa, Pakistan

Authors: Sajid Ali Khan, Karim Ullah, Usman Ghani

Abstract:

Community participation is the collaboration of project beneficiaries; voluntarily or because of some incentives or persuasion agree to put effort and work with development projects. Sustainability of projects is the ability to maintain its services, operations, and other benefits during its anticipated time. This study investigated the dynamics of community participation and its contribution to the sustainability of projects. In multiple case-study designs with semi-structured questionnaires and interviews, this study analyzes community participation with the help of individual case analysis followed by cross-case analysis in the RAHA & CDLD developmental project. Finally, the study outcomes are linked with the specified literature in order to comprehend the phenomena. The findings of the study suggest an Analytical framework developed by the current study covering different barriers and enablers to community participation and its implications.

Keywords: community participation, enablers, barriers, project sustainability

Procedia PDF Downloads 248
5625 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls

Authors: M. A. Anwar, K. Iqbal, M. Razzaq

Abstract:

Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.

Keywords: bifurcation, elastic walls, finite element, wall shear stress,

Procedia PDF Downloads 182
5624 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 297
5623 GPU-Accelerated Triangle Mesh Simplification Using Parallel Vertex Removal

Authors: Thomas Odaker, Dieter Kranzlmueller, Jens Volkert

Abstract:

We present an approach to triangle mesh simplification designed to be executed on the GPU. We use a quadric error metric to calculate an error value for each vertex of the mesh and order all vertices based on this value. This step is followed by the parallel removal of a number of vertices with the lowest calculated error values. To allow for the parallel removal of multiple vertices we use a set of per-vertex boundaries that prevent mesh foldovers even when simplification operations are performed on neighbouring vertices. We execute multiple iterations of the calculation of the vertex errors, ordering of the error values and removal of vertices until either a desired number of vertices remains in the mesh or a minimum error value is reached. This parallel approach is used to speed up the simplification process while maintaining mesh topology and avoiding foldovers at every step of the simplification.

Keywords: computer graphics, half edge collapse, mesh simplification, precomputed simplification, topology preserving

Procedia PDF Downloads 367
5622 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil

Procedia PDF Downloads 130
5621 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.

Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation

Procedia PDF Downloads 99
5620 Performance Evaluation of One and Two Dimensional Prime Codes for Optical Code Division Multiple Access Systems

Authors: Gurjit Kaur, Neena Gupta

Abstract:

In this paper, we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension, i.e. time slots, whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research, we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for Optical Code Division Multiple Access (OCDMA) system on a single platform. Analysis shows that 2D prime code supports lesser number of active users than 1D codes, but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.

Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa

Procedia PDF Downloads 337
5619 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.

Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods

Procedia PDF Downloads 49
5618 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: erosion, finite volume method, sediment transport, shallow water equations

Procedia PDF Downloads 217
5617 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 138
5616 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model

Authors: Qijiao He

Abstract:

MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.

Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation

Procedia PDF Downloads 173
5615 The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique

Authors: Yeliz Karaca, Rana Karabudak

Abstract:

Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique.

Keywords: clinical decision support, clustering algorithms, multiple sclerosis, multifractal techniques

Procedia PDF Downloads 171
5614 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 365
5613 Impact of Data and Model Choices to Urban Flood Risk Assessments

Authors: Abhishek Saha, Serene Tay, Gerard Pijcke

Abstract:

The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.

Keywords: flooding, DEM, shallow water equations, subgrid

Procedia PDF Downloads 142
5612 Multivariate Genome-Wide Association Studies for Identifying Additional Loci for Myopia

Authors: Qiao Fan, Xiaobo Guo, Junxian Zhu, Xiaohu Ding, Ching-Yu Cheng, Tien-Yin Wong, Mingguang He, Heping Zhang, Xueqin Wang

Abstract:

A systematic, simultaneous analysis of multiple phenotypes in genome-wide association studies (GWASs) draws a great attention to integrate the signals from single phenotypes with increased power. However, lacking an interpretable and efficient multivariate GWAS analysis impede the application of such approach. In this study, we propose to decompose the multivariate model into a series of simple univariate models. This transformation illuminates what exactly the individual trait contributes to the significant signals from the multivariate analyses. By employing our approach in the analysis of three myopia-related endophenotypes from the Singapore Malay Eye Study (SIMES), we identify novel candidate loci which were successfully validated in an independent Guangzhou Twin Eye Study (GTES).

Keywords: GWAS multivariate, multiple traits, myopia, association

Procedia PDF Downloads 225
5611 Associated Map and Inter-Purchase Time Model for Multiple-Category Products

Authors: Ching-I Chen

Abstract:

The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.

Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce

Procedia PDF Downloads 369
5610 Evaluation of Double Displacement Process via Gas Dumpflood from Multiple Gas Reservoirs

Authors: B. Rakjarit, S. Athichanagorn

Abstract:

Double displacement process is a method in which gas is injected at an updip well to displace the oil bypassed by waterflooding operation from downdip water injector. As gas injection is costly and a large amount of gas is needed, gas dump-flood from multiple gas reservoirs is an attractive alternative. The objective of this paper is to demonstrate the benefits of the novel approach of double displacement process via gas dump-flood from multiple gas reservoirs. A reservoir simulation model consisting of a dipping oil reservoir and several underlying layered gas reservoirs was constructed in order to investigate the performance of the proposed method. Initially, water was injected via the downdip well to displace oil towards the producer located updip. When the water cut at the producer became high, the updip well was shut in and perforated in the gas zones in order to dump gas into the oil reservoir. At this point, the downdip well was open for production. In order to optimize oil recovery, oil production and water injection rates and perforation strategy on the gas reservoirs were investigated for different numbers of gas reservoirs having various depths and thicknesses. Gas dump-flood from multiple gas reservoirs can help increase the oil recovery after implementation of waterflooding upto 10%. Although the amount of additional oil recovery is slightly lower than the one obtained in conventional double displacement process, the proposed process requires a small completion cost of the gas zones and no operating cost while the conventional method incurs high capital investment in gas compression facility and high-pressure gas pipeline and additional operating cost. From the simulation study, oil recovery can be optimized by producing oil at a suitable rate and perforating the gas zones with the right strategy which depends on depths, thicknesses and number of the gas reservoirs. Conventional double displacement process has been studied and successfully implemented in many fields around the world. However, the method of dumping gas into the oil reservoir instead of injecting it from surface during the second displacement process has never been studied. The study of this novel approach will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost.

Keywords: gas dump-flood, multi-gas layers, double displacement process, reservoir simulation

Procedia PDF Downloads 409
5609 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 218