Search results for: load rating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3203

Search results for: load rating

2333 Analysis of Behaviors of Single and Group Helical Piles in Sands from Experiment Results

Authors: Jongho Park, Junwon Lee, Byeonghyun Choi, Kicheol Lee, Dongwook Kim

Abstract:

The typically-used oil sand plant foundations are driven pile or drilled shaft. With more strict environmental regulations world widely, it became more important to completely remove the foundation during the stage of plant demolition. However, it is difficult to remove driven piles or drilled shafts that are installed at a deeper and stronger depth to gain more bearing pile capacity. The helical pile can be easily removed after its use and recycled; therefore it is suitable for oil sand plant foundation. This study analyzes the behavior of helical piles in sands. Axial pile load tests were carried out the varying spacing of helix plates (helices), rotation speed and weight of axial loading during pile installation. From the experiments, optimal helix plate spacing, rotation speed, axial loading during installation were determined. In addition, the behavior of helical pile groups was examined varying pile spacing. Finally, the behavior of single helical piles and that of group helical piles were compared.

Keywords: oil sand plant, pile load test, helical pile, group helical pile, behavior

Procedia PDF Downloads 167
2332 Assessment of Healthy Lifestyle Behavior Needs for Older Adults Living with Hypertension

Authors: P. Sutipan, U. Intarakamhang

Abstract:

The purpose of this study was to assess and prioritize the order of needs with regard to the healthy lifestyle behaviors for older adults living with hypertension. The participants involved 400 hypertensive elderly individuals in Chiang Mai, Thailand. The research instrument was a 26-item needs-assessment questionnaire in a dual response format on a four-level rating scale. The data was analyzed with the use of descriptive statistics and the needs were ranked using the Modified Priority Needs Index (PNIModified). The results indicated that the three priorities of healthy lifestyle behavior were healthy eating (PNImodified = 0.36), exercise (PNImodified = 0.35), and social contribution (PNImodified = 0.34), respectively. The implications of the findings for planning the intervention phase of the project are of particular interest.

Keywords: needs assessment, the modified priority needs index (PNIModified), healthy lifestyle behavior, older adults

Procedia PDF Downloads 299
2331 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physico-mechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: blast energy absorber, SHPB, expanded glass, expanded ceramics

Procedia PDF Downloads 458
2330 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks

Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem

Abstract:

Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.

Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule

Procedia PDF Downloads 100
2329 Experimental Investigation of Folding of Rubber-Filled Circular Tubes on Energy Absorption Capacity

Authors: MohammadSadegh SaeediFakher, Jafar Rouzegar, Hassan Assaee

Abstract:

In this research, mechanical behavior and energy absorption capacity of empty and rubber-filled brazen circular tubes under quasi-static axial loading are investigated, experimentally. The brazen tubes were cut out of commercially available brazen circular tubes with the same length and diameter. Some of the specimens were filled with rubbers with three different shores and also, an empty tube was prepared. The specimens were axially compressed between two rigid plates in a quasi-static process using a Zwick testing machine. Load-displacement diagrams and energy absorption of the tested tubes were extracted from experimental data. The results show that filling the brazen tubes with rubber causes those to absorb more energy and the energy absorption of specimens are increased by increasing the shore of rubbers. In comparison to the empty tube, the first fold for the rubber-filled tubes occurs at lower load and it can be concluded that the rubber-filled tubes are better energy absorbers than the empty tubes. Also, in contrast with the empty tubes, the tubes that were filled with lower rubber shore deform asymmetrically.

Keywords: axial compression, quasi-static loading, folding, energy absorbers, rubber-filled tubes

Procedia PDF Downloads 431
2328 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm

Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo

Abstract:

Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.

Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation

Procedia PDF Downloads 80
2327 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinge

Abstract:

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Keywords: biological leavening agent, coconut toddy, fermentation, yeast

Procedia PDF Downloads 343
2326 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology

Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai

Abstract:

In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.

Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater

Procedia PDF Downloads 344
2325 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant

Procedia PDF Downloads 298
2324 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 379
2323 The Investigation of Students’ Learning Preference from Native English Speaking Instructor and Non-Native Speaking Instructor

Authors: Yingling Chen

Abstract:

Most current research has been focused on whether NESTs have advantages over NNESTs in English language Teaching. The purpose of this study was to investigate English learners’ preferences toward native English speaking teachers and non-English speaking teachers in four skills of English language learning. This qualitative study consists of 12 participants. Two open-ended questions were investigated and analyzed. The findings revealed that the participants held an overall preference for NESTs over NNESTs in reading, writing, and listening English skills; nevertheless, they believed both NESTs and NNESTs offered learning experiences strengths, and weaknesses to satisfy students’ need in their English instruction.

Keywords: EFL, instruction, Student Rating of Instructions (SRI), perception

Procedia PDF Downloads 214
2322 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing

Authors: Ali Rabiee, Hessam Ghasemnejad

Abstract:

Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.

Keywords: through-thickness stitching, 3D enforcement​, energy absorption, tubular composite structures

Procedia PDF Downloads 262
2321 Application of Gene Expression Programming (GEP) in Predicting Uniaxial Compressive Strength of Pyroclastic Rocks

Authors: İsmail İnce, Mustafa Fener, Sair Kahraman

Abstract:

The uniaxial compressive strength (UCS) of rocks is an important input parameter for the design of rock engineering project. Compressive strength can be determined in the laboratory using the uniaxial compressive strength (UCS) test. Although the test is relatively simple, the method is time consuming and expensive. Therefore many researchers have tried to assess the uniaxial compressive strength values of rocks via relatively simple and indirect tests (e.g. point load strength test, Schmidt Hammer hardness rebound test, P-wave velocity test, etc.). Pyroclastic rocks are widely exposed in the various regions of the world. Cappadocia region located in the Central Anatolia is one of the most spectacular cite of these regions. It is important to determine the mechanical behaviour of the pyroclastic rocks due to their ease of carving, heat insulation properties and building some civil engineering constructions in them. The purpose of this study is to estimate a widely varying uniaxial strength of pyroclastic rocks from Cappadocia region by means of point load strength, porosity, dry density and saturated density tests utilizing gene expression programming.

Keywords: pyroclastic rocks, uniaxial compressive strength, gene expression programming (GEP, Cappadocia region

Procedia PDF Downloads 341
2320 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 106
2319 The Operating Results of the English General Music Course on the Education Platform

Authors: Shan-Ken Chine

Abstract:

This research aims to a one-year course run of String Music Appreciation, an international online course launched on the British open education platform. It explains how to present music teaching videos with three main features. They are music lesson explanations, instrumental playing demonstrations, and live music performances. The plan of this course is with four major themes and a total of 97 steps. In addition, the paper also uses the testing data provided by the education platform to analyze the performance of learners and to understand the operation of the course. It contains three test data in the statistics dashboard. They are course-run measures, total statistics, and statistics by week. The paper ends with a review of the course's star rating in this one-year run. The result of this course run will be adjusted when it starts again in the future.

Keywords: music online courses, MOOCs, ubiquitous learning, string music, general music education

Procedia PDF Downloads 37
2318 Journal Bearing with Controllable Radial Clearance, Design and Analysis

Authors: Majid Rashidi, Shahrbanoo Farkhondeh Biabnavi

Abstract:

The hydrodynamic instability phenomenon in a journal bearing may occur by either a reduction in the load carried by journal bearing, by an increase in the journal speed, by change in the lubricant viscosity, or a combination of these factors. The previous research and development work done to overcome the instability issue of journal bearings, operating in hydrodynamic lubricate regime, can be categorized as follows: A) Actively controlling the bearing sleeve by using piezo actuator, b) Inclusion of strategically located and shaped internal grooves within inner surface of the bearing sleeve, c) Actively controlling the bearing sleeve using an electromagnetic actuator, d)Actively and externally pressurizing the lubricant within a journal bearing set, and e)Incorporating tilting pads within the inner surface of the bearing sleeve that assume different equilibrium angular position in response to changes in the bearing design parameter such as speed and load. This work presents an innovative design concept for a 'smart journal bearing' set to operate in a stable hydrodynamic lubrication regime, despite variations in bearing speed, load, and its lubricant viscosity. The proposed bearing design allows adjusting its radial clearance for an attempt to maintain a stable bearing operation under those conditions that may cause instability for a bearing with a fixed radial clearance. The design concept allows adjusting the radial clearance at small increments in the order of 0.00254 mm. This is achieved by axially moving two symmetric conical rigid cavities that are in close contact with the conically shaped outer shell of a sleeve bearing. The proposed work includes a 3D model of the bearing that depicts the structural interactions of the bearing components. The 3D model is employed to conduct finite element Analyses to simulate the mechanical behavior of the bearing from a structural point of view. The concept of controlling of the radial clearance, as presented in this work, is original and has not been proposed and discuss in previous research. A typical journal bearing was analyzed under a set of design parameters, namely r =1.27 cm (journal radius), c = 0.0254 mm (radial clearance), L=1.27 cm (bearing length), w = 445N (bearing load), μ = 0.028 Pascale (lubricant viscosity). A shaft speed as 3600 r.p.m was considered, and the mass supported by the bearing, m, is set to be 4.38kg. The Summerfield Number associated with the above bearing design parameters turn to be, S=0.3. These combinations resulted in stable bearing operation. Subsequently, the speed was postulated to increase from 3600 r.p.mto 7200 r.p.m; the bearing was found to be unstable under the new increased speed. In order to regain stability, the radial clearance was increased from c = 0.0254 mm to0.0358mm. The change in the radial clearance was shown to bring the bearing back to stable an operating condition.

Keywords: adjustable clearance, bearing, hydrodynamic, instability, journal

Procedia PDF Downloads 284
2317 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: steel structure, blast load, terrorist attacks, charge weight, damage level

Procedia PDF Downloads 364
2316 The Behavior of Polypropylene Fiber Reinforced Sand Loaded by Squair Footing

Authors: Dhiaadin Bahaadin Noory

Abstract:

This research involves the effect of both sizes of reinforced zone and the amount of polypropylene fiber reinforcement on the structural behavior of model-reinforced sand loaded by square footing. The ratio of the side of the square reinforced zone to the footing width (W/B) and the ratio of the square reinforced zone depth to footing width (H/B) has been varied from one to six and from one to three, respectively. The tests were carried out on a small-scale laboratory model in which uniform-graded sand was used as a fill material. It was placed in a highly dense state by hitting a thin wooden board placed on the sand surface with a hammer. The sand was reinforced with randomly oriented discrete fibrillated polypropylene fibers. The test results indicated a significant increase in the bearing capacity and stiffness of the subgrade and a modification of load–the settlement behavior of sand with the size of the reinforced zone and amount of fiber reinforcement. On the basis of the present test results, the optimal side width and depth of the reinforced zone were 4B and 2B, respectively, while the optimal percentage of fibers was 0.4%.

Keywords: square footing, polypropylene fibers, bearing capacity, stiffness, load settlement behavior, relative density

Procedia PDF Downloads 65
2315 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
2314 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 403
2313 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading

Procedia PDF Downloads 452
2312 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section

Procedia PDF Downloads 328
2311 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 305
2310 Reliability Study of Steel Headed Stud Shear Connector Exposed to Fire

Authors: Idris Haruna Muhammad, Okorie Austine Uche

Abstract:

This paper presents a study on reliability of shear connector exposed to fire situation in accordance with Eurocode 4. The reliability analysis i reliability analysis is based on First Order Second Moment Integration Technique (FOSMIT) using FORM 5. Performance functions for shear connector are derived for normal and under fire condition and their implied safety levels are evaluated. Four (4) design variables which include ultimate tensile strength, diameter of the stud, temperature and span of the steel beam are treated as random variables with their statistical characteristic adopted from literature. Results show that for normal condition the β – value decrease from 7.95 to 5.43 which show it is conservative in safety level for normal condition. Under fire condition, β – value decrease from 2.88 to – 0.32 with corresponding load ratio of 0.2 to 1.2. It was also shown from sensitivity assessment, that the temperature and span of the beam decrease with increase in their β – values while ultimate tensile strength and diameter of the stud increase with increase in their β – values for a given load ratio of 0.2 to 1.2.

Keywords: Composite steel beam, Fire condition, Shear stud, Sensitivity study

Procedia PDF Downloads 521
2309 Utilization of Fins to Improve the Response of Pile under Torsional Loads

Authors: Waseim Ragab Azzam Ahmed Mohamed Nasr, Aalaa Ibrahim Khater

Abstract:

Torsional loads from offshore wind turbines, waves, wind, earthquakes, ship collisions in the maritime environment, and electrical transmission towers might affect the pile foundations. Torsional loads can also be caused by the axial load from the sustaining structures. The paper introduces the finned pile, an alternative method of pile modification. The effects of torsional loads were investigated through a series of experimental tests aimed at improving the torsional capacity of a single pile in the sand (where sand was utilized in a state of medium density (Dr = 50%), with or without fins. In these tests, the fins' length, width, form, and number were varied to see how these attributes affected the maximum torsional capacity of the piles. We have noticed the torsion-rotation reaction. The findings demonstrated that the fins improve the maximum torsional capacity of the piles. It was demonstrated that a length of 0.6 times the embedded pile's length and a width equivalent to the pile's diameter constitute the optimal fin geometry. For the conventional pile and the finned pile, the maximum torsional capacities were determined to be 4.12 N.m. and 7.36 N.m., respectively. When subjected to torsional loads, the fins' presence enhanced the piles' maximum torsional capacity by almost 79%.

Keywords: clean sand, finned piles, model tests, torsional load

Procedia PDF Downloads 68
2308 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils

Procedia PDF Downloads 174
2307 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit

Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park

Abstract:

The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.

Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis

Procedia PDF Downloads 378
2306 Experimental Investigation on Over-Cut in Ultrasonic Machining of WC-Co Composite

Authors: Ravinder Kataria, Jatinder Kumar, B. S. Pabla

Abstract:

Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard, and fragile such as advanced ceramics, refractories, crystals, quartz etc. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on over cut in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that abrasive grit size and tool material are most significant factors for over cut.

Keywords: ANOVA, abrasive grit size, Taguchi, WC-Co, ultrasonic machining

Procedia PDF Downloads 398
2305 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.

Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test

Procedia PDF Downloads 220
2304 Nonlinear Response of Tall Reinforced Concrete Shear Wall Buildings under Wind Loads

Authors: Mahtab Abdollahi Sarvi, Siamak Epackachi, Ali Imanpour

Abstract:

Reinforced concrete shear walls are commonly used as the lateral load-resisting system of mid- to high-rise office or residential buildings around the world. Design of such systems is often governed by wind rather than seismic effects, in particular in low-to-moderate seismic regions. The current design philosophy as per the majority of building codes under wind loads require elastic response of lateral load-resisting systems including reinforced concrete shear walls when subjected to the rare design wind load, resulting in significantly large wall sections needed to meet strength requirements and drift limits. The latter can highly influence the design in upper stories due to stringent drift limits specified by building codes, leading to substantial added costs to the construction of the wall. However, such walls may offer limited to moderate over-strength and ductility due to their large reserve capacity provided that they are designed and detailed to appropriately develop such over-strength and ductility under extreme wind loads. This would significantly contribute to reducing construction time and costs, while maintaining structural integrity under gravity and frequently-occurring and less frequent wind events. This paper aims to investigate the over-strength and ductility capacity of several imaginary office buildings located in Edmonton, Canada with a glance at earthquake design philosophy. Selected models are 10- to 25-story buildings with three types of reinforced concrete shear wall configurations including rectangular, barbell, and flanged. The buildings are designed according to National Building Code of Canada. Then fiber-based numerical models of the walls are developed in Perform 3D and by conducting nonlinear static (pushover) analysis, lateral nonlinear behavior of the walls are evaluated. Ductility and over-strength of the structures are obtained based on the results of the pushover analyses. The results confirmed moderate nonlinear capacity of reinforced concrete shear walls under extreme wind loads. This is while lateral displacements of the walls pass the serviceability limit states defined in Pre standard for Performance-Based Wind Design (ASCE). The results indicate that we can benefit the limited nonlinear response observed in the reinforced concrete shear walls to economize the design of such systems under wind loads.

Keywords: concrete shear wall, high-rise buildings, nonlinear static analysis, response modification factor, wind load

Procedia PDF Downloads 107