Search results for: intuitionistic fuzzy regression
3039 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 823038 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1333037 Assessment of Pastoralist-Crop Farmers Conflict and Food Security of Farming Households in Kwara State, Nigeria
Authors: S. A. Salau, I. F. Ayanda, I. Afe, M. O. Adesina, N. B. Nofiu
Abstract:
Food insecurity is still a critical challenge among rural and urban households in Nigeria. The country’s food insecurity situation became more pronounced due to frequent conflict between pastoralist and crop farmers. Thus, this study assesses pastoralist-crop farmers’ conflict and food security of farming households in Kwara state, Nigeria. The specific objectives are to measure the food security status of the respondents, quantify pastoralist- crop farmers’ conflict, determine the effect of pastoralist- crop farmers conflict on food security and describe the effective coping strategies adopted by the respondents to reduce the effect of food insecurity. A combination of purposive and simple random sampling techniques will be used to select 250 farming households for the study. The analytical tools include descriptive statistics, Likert-scale, logistic regression, and food security index. Using the food security index approach, the percentage of households that were food secure and insecure will be known. Pastoralist- crop farmers’ conflict will be measured empirically by quantifying loses due to the conflict. The logistic regression will indicate if pastoralist- crop farmers’ conflict is a critical determinant of food security among farming households in the study area. The coping strategies employed by the respondents in cushioning the effects of food insecurity will also be revealed. Empirical studies on the effect of pastoralist- crop farmers’ conflict on food security are rare in the literature. This study will quantify conflict and reveal the direction as well as the extent of the relationship between conflict and food security. It could contribute to the identification and formulation of strategies for the minimization of conflict among pastoralist and crop farmers in an attempt to reduce food insecurity. Moreover, this study could serve as valuable reference material for future researches and open up new areas for further researches.Keywords: agriculture, conflict, coping strategies, food security, logistic regression
Procedia PDF Downloads 1913036 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria
Authors: Kemi Olalekan Oduntan
Abstract:
This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth
Procedia PDF Downloads 3643035 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.Keywords: ganoderma, oil palm, regression model, yield loss, economic loss
Procedia PDF Downloads 3893034 Locus of Control, Metacognitive Knowledge, Metacognitive Regulation, and Student Performance in an Introductory Economics Course
Authors: Ahmad A. Kader
Abstract:
In the principles of Microeconomics course taught during the Fall Semester 2019, 158out of 179 students participated in the completion of two questionnaires and a survey describing their demographic and academic profiles. The two questionnaires include the 29 items of the Rotter Locus of Control Scale and the 52 items of the Schraw andDennisonMetacognitive Awareness Scale. The 52 items consist of 17 items describing knowledge of cognition and 37 items describing the regulation of cognition. The paper is intended to show the combined influence of locus of control, metacognitive knowledge, and metacognitive regulation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, student classification, whether the course was required or elective, employments, whether a high school economic course was taken, and attendance. Regression results show that of the economic education variables, GPA, classification, whether the course was required or elective, and attendance are the only significant variables in their influence on student grade. Of the educational psychology variables, the regression results show that the locus of control variable has a negative and significant effect, while the metacognitive knowledge variable has a positive and significant effect on student grade. Also, the adjusted R square value increased markedly with the addition of the locus of control, metacognitive knowledge, and metacognitive regulation variables to the regression equation. The t test results also show that students who are internally oriented and are high on the metacognitive knowledge scale significantly outperform students who are externally oriented and are low on the metacognitive knowledge scale. The implication of these results for educators is discussed in the paper.Keywords: locus of control, metacognitive knowledge, metacognitive regulation, student performance, economic education
Procedia PDF Downloads 1203033 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation
Procedia PDF Downloads 2923032 Profitability Analysis of Investment in Oil Palm Value Chain in Osun State, Nigeria
Authors: Moyosooore A. Babalola, Ayodeji S. Ogunleye
Abstract:
The main focus of the study was to determine the profitability of investment in the Oil Palm value chain of Osun State, Nigeria in 2015. The specific objectives were to describe the socio-economic characteristics of Oil Palm investors (producers, processors and marketers), to determine the profitability of the investment to investors in the Oil Palm value chain, and to determine the factors affecting the profitability of the investment of the oil palm investors in Osun state. A sample of 100 respondents was selected in this cross-sectional survey. Multiple stage sampling procedure was used for data collection of producers and processors while purposive sampling was used for marketers. Data collected was analyzed using the following analytical tools: descriptive statistics, budgetary analysis and regression analysis. The results of the gross margin showed that the producers and processors were more profitable than the marketers in the oil palm value chain with their benefit-cost ratios as 1.93, 1.82 and 1.11 respectively. The multiple regression analysis showed that education and years of experience were significant among marketers and producers while age and years of experience had significant influence on the gross margin of processors. Based on these findings, improvement on the level of education of oil palm investors is recommended in order to address the relatively low access to post-primary education among the oil palm investors in Osun State. In addition to this, it is important that training be made available to oil palm investors. This will improve the quality of their years of experience, ensuring that it has a positive influence on their gross margin. Low access to credit among processors and producer could be corrected by making extension services available to them. Marketers would also greatly benefit from subsidized prices on oil palm products to increase their gross margin, as the huge percentage of their total cost comes from acquiring palm oil.Keywords: oil palm, profitability analysis, regression analysis, value chain
Procedia PDF Downloads 3633031 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression
Procedia PDF Downloads 4283030 Regression for Doubly Inflated Multivariate Poisson Distributions
Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta
Abstract:
Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios
Procedia PDF Downloads 1563029 Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco
Authors: Taoufik Benchelha, Toufik Remmal, Rachid El Hamdouni, Hamou Mansouri, Houssein Ejjaouani, Halima Jounaid, Said Benchelha
Abstract:
During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks.Keywords: explosive, logistic regression, rock mass, slope stability
Procedia PDF Downloads 3763028 Count Regression Modelling on Number of Migrants in Households
Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu
Abstract:
The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones
Procedia PDF Downloads 2833027 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 4453026 Examining Bulling Rates among Youth with Intellectual Disabilities
Authors: Kaycee L. Bills
Abstract:
Adolescents and youth who are members of a minority group are more likely to experience higher rates of bullying in comparison to other student demographics. Specifically, adolescents with intellectual disabilities are a minority population that is more susceptible to experience unfair treatment in social settings. This study employs the 2015 Wave of the National Crime Victimization Survey – School Crime Supplement (NCVS/SCS) longitudinal dataset to explore bullying rates experienced among adolescents with intellectual disabilities. This study uses chi-square testing and a logistic regression to analyze if having a disability influences the likelihood of being bullied in comparison to other student demographics. Results of the chi-square testing and the logistic regression indicate that adolescent students who were identified as having a disability were approximately four times more likely to experience higher bullying rates in comparison to all other majority and minority student populations. Thus, it means having a disability resulted in higher bullying rates in comparison to all student groups.Keywords: disability, bullying, social work, school bullying
Procedia PDF Downloads 1313025 Gender Estimation by Means of Quantitative Measurements of Foramen Magnum: An Analysis of CT Head Images
Authors: Thilini Hathurusinghe, Uthpalie Siriwardhana, W. M. Ediri Arachchi, Ranga Thudugala, Indeewari Herath, Gayani Senanayake
Abstract:
The foramen magnum is more prone to protect than other skeletal remains during high impact and severe disruptive injuries. Therefore, it is worthwhile to explore whether these measurements can be used to determine the human gender which is vital in forensic and anthropological studies. The idea was to find out the ability to use quantitative measurements of foramen magnum as an anatomical indicator for human gender estimation and to evaluate the gender-dependent variations of foramen magnum using quantitative measurements. Randomly selected 113 subjects who underwent CT head scans at Sri Jayawardhanapura General Hospital of Sri Lanka within a period of six months, were included in the study. The sample contained 58 males (48.76 ± 14.7 years old) and 55 females (47.04 ±15.9 years old). Maximum length of the foramen magnum (LFM), maximum width of the foramen magnum (WFM), minimum distance between occipital condyles (MnD) and maximum interior distance between occipital condyles (MxID) were measured. Further, AreaT and AreaR were also calculated. The gender was estimated using binomial logistic regression. The mean values of all explanatory variables (LFM, WFM, MnD, MxID, AreaT, and AreaR) were greater among male than female. All explanatory variables except MnD (p=0.669) were statistically significant (p < 0.05). Significant bivariate correlations were demonstrated by AreaT and AreaR with the explanatory variables. The results evidenced that WFM and MxID were the best measurements in predicting gender according to binomial logistic regression. The estimated model was: log (p/1-p) =10.391-0.136×MxID-0.231×WFM, where p is the probability of being a female. The classification accuracy given by the above model was 65.5%. The quantitative measurements of foramen magnum can be used as a reliable anatomical marker for human gender estimation in the Sri Lankan context.Keywords: foramen magnum, forensic and anthropological studies, gender estimation, logistic regression
Procedia PDF Downloads 1513024 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model
Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker
Abstract:
Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.Keywords: air pollution, time series modeling, public health, road transport
Procedia PDF Downloads 1443023 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application
Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro
Abstract:
This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.Keywords: item response theory, dimensionality, submodel theory, factorial analysis
Procedia PDF Downloads 3723022 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models
Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo
Abstract:
There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.Keywords: chlorodifluoromethane (HCFC-142b), ozone, least squares method, regression models
Procedia PDF Downloads 1243021 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2923020 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna
Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,
Abstract:
The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift
Procedia PDF Downloads 3073019 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise
Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke
Abstract:
Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.Keywords: BSR, noise, correlation, regression
Procedia PDF Downloads 793018 An Investigation of Commitment to Marital Relationship Precedents through Self-Expansion in Students from the Medical Science University of Iran
Authors: Mehravar Javid, Laura Reid Harris, Zahra Khodadadi, Rachel Walton
Abstract:
The study aimed to explore commitment precedence through self-expansion among students at the Medical Science University of Shiraz, Iran. Method: The statistical population was comprised of students at Shiraz University of Medical Science during the academic years 2013 to 2014. Using random sampling, 133 married students (50 males and 83 females) were selected. The commitment condition of this studied group was assessed using Adam and Jones' (1999) Marital Commitment Dimensions Scale (DCI), and self-expansion was measured using Aron and Lewandowski's (2002) Self-Expansion Questionnaire. Simple regression analyses investigated commitment precedence via self-expansion. Results: The data revealed a positive correlation between total commitment (r=0.35, p < 0.01), the subscales of commitment to the spouse (r=0.43, p < 0.01), and commitment to marriage (r=0.31, p < 0.01). Regression analyses indicated that perceived self-expansion positively correlated with commitment to marital relationships in married students. The findings suggest that an increased possibility of self-expansion in a marital relationship corresponds with heightened commitment.Keywords: commitment to marital relationship, married students, relationship dynamics, self-expansion
Procedia PDF Downloads 673017 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan
Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed
Abstract:
This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis
Procedia PDF Downloads 743016 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras
Abstract:
Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality
Procedia PDF Downloads 3133015 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 1603014 Analysis of Labor Behavior Effect on Occupational Health and Safety Management by Multiple Linear Regression
Authors: Yulinda Rizky Pratiwi, Fuji Anugrah Emily
Abstract:
Management of Occupational Safety and Health (OSH) are appropriately applied properly by all workers and pekarya in the company. K3 management application also has become very important to prevent accidents. Violation of the rules regarding the K3 has often occurred from time to time. By 2015 the number of occurrences of a violation of the K3 or so-called unsafe action tends to increase. Until finally in January 2016, the number increased drastically unsafe action. Trigger increase in the number of unsafe action is a decrease in the quality of management practices K3. While the application of K3 management performed by each individual thought to be influenced by the attitude and observation guide the actions of each of the individual. In addition to the decline in the quality of K3 management application may result in increased likelihood of accidents and losses for the company as well as the local co-workers. The big difference in the number of unsafe action is very significant in the month of January 2016, making the company Pertamina as the national oil company must do a lot of effort to keep track of how the implementation of K3 management on every worker and pekarya, one at PT Pertamina EP Cepu Field Asset IV. To consider the effort to control the implementation of K3 management can be seen from the attitude and observation guide the actions of the workers and pekarya. By using Multiple Linear Regression can be seen the influence of attitude and action observation guide workers and pekarya the K3 management application that has been done. The results showed that scores K3 management application of each worker and pekarya will increase by 0.764 if the score pekarya worker attitudes and increase one unit, whereas if the score Reassurance action guidelines and pekarya workers increased by one unit then the score management application K3 will increase by 0.754.Keywords: occupational safety and health, management of occupational safety and health, unsafe action, multiple linear regression
Procedia PDF Downloads 2303013 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking
Procedia PDF Downloads 1473012 Predictors of School Safety Awareness among Malaysian Primary School Teachers
Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin
Abstract:
With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools
Procedia PDF Downloads 4683011 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 3423010 Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China
Authors: Chang-Fa Liu, Yi-Ting Wang, Yuan Liu, Hai-Feng Wei, Lei Fang, Jin Li
Abstract:
Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn.Keywords: ecological risk assessment, heavy metals, sediment, marsh, Shuangtai estuary
Procedia PDF Downloads 348