Search results for: indoor residual spray
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1529

Search results for: indoor residual spray

659 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method

Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama

Abstract:

SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.

Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies

Procedia PDF Downloads 68
658 Forensic Analysis of Thumbnail Images in Windows 10

Authors: George Kurian, Hongmei Chi

Abstract:

Digital evidence plays a critical role in most legal investigations. In many cases, thumbnail databases show important information in that investigation. The probability of having digital evidence retrieved from a computer or smart device has increased, even though the previous user removed data and deleted apps on those devices. Due to the increase in digital forensics, the ability to store residual information from various thumbnail applications has improved. This paper will focus on investigating thumbnail information from Windows 10. Thumbnail images of interest in forensic investigations may be intact even when the original pictures have been deleted. It is our research goal to recover useful information from thumbnails. In this research project, we use various forensics tools to collect left thumbnail information from deleted videos or pictures. We examine and describe the various thumbnail sources in Windows and propose a methodology for thumbnail collection and analysis from laptops or desktops. A machine learning algorithm is adopted to help speed up content from thumbnail pictures.

Keywords: digital forensic, forensic tools, soundness, thumbnail, machine learning, OCR

Procedia PDF Downloads 112
657 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 192
656 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades

Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi

Abstract:

In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.

Keywords: hot roller, wear, behavior, microstructure

Procedia PDF Downloads 217
655 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 349
654 Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions

Authors: Ali Bolat, Ali Bayat, Mustafa Gullu

Abstract:

Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume.

Keywords: air assisted sprayer, drift nozzles, biological efficiency, maize plant

Procedia PDF Downloads 199
653 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather

Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour

Abstract:

The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati Tropical

Keywords: energyplus, multi-layer of PCM, phase changing materials, tropical area

Procedia PDF Downloads 81
652 Valorization of Beer Brewing Wastes by Composting

Authors: M. E. Silva, I. Brás

Abstract:

The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored by evaluating standard physical and chemical parameters. The compost quality was assessed by the heavy metals content and phytotoxicity. Both piles reached a thermophilic phase in the first day, however having different trends. The pH showed a slight alkaline character. The C/N reached values lower than 19 at the end of composting process. Generally, all the piles exhibited absence of heavy metals. However, the pile SM exhibited phytotoxicity. This study showed that RYDE slurry can be valorized by composting with cow manure.

Keywords: beer brewing wastes, compost, valorization, quality

Procedia PDF Downloads 432
651 Hepatological Alterations in Market Gardeners Occupationally Exposed to Pesticides in the Western Highlands of Cameroon

Authors: M. G. Tanga, P. B. Telefo, D. N. Tarla

Abstract:

Even though the WHO, the EPA and other regulatory bodies have recognized the effects of acute pesticide poisoning little data exists on health effects after long-term low-dose exposures especially in Africa and Cameroon. The aim of this study was to evaluate the impact of pesticides on the hepatic functions of market gardeners in the Western Region of Cameroon by studying some biochemical parameters. Sixty six male market gardeners in Foumbot, Massangam, and Bantoum were interviewed on their health status, habits and pesticide use in agriculture, including the spray frequency, application method, and pesticide dosage. Thirty men with no history of pesticide exposure were recruited as control group. Thereafter, their blood samples were collected for assessment of hepatic function biomarkers (ALT, AST, and albumin). The results showed that 56 pesticides containing 25 active ingredients were currently used by market gardeners enrolled in our study and most of their symptoms (headache, fatigue, skin rashes, eye irritation, and nausea) were related to the use of these chemicals. Compared to the control subjects market gardeners’ ALT levels (32.9 ± 7.19 UL-1 vs. 82.11 ± 35.40 UL-1; P < 0.001) and, AST levels (40.63 ± 6.52 UL-1 vs. 112.11 UL-1 ± 47.15 UL-1; P < 0.001) were significantly increased. These results suggest that liver function tests can be used as biomarkers to indicate toxicity before overt clinical signs occur. The market gardeners’ chronic exposure to pesticides due to poor application measures could lead to hepatic function impairment. Further research on larger scale is needed to confirm these findings and to establish a mechanism of toxicity.

Keywords: biomarkers, liver, pesticides, occupational exposure

Procedia PDF Downloads 297
650 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme

Procedia PDF Downloads 404
649 Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides

Authors: Alexandre M. Brighenti

Abstract:

One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha-1), flumioxazin (60 and 120 g ai ha-1), sulfentrazone (150 and 300 g ai ha-1) and two controls (weedy and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha-1), flumioxazin (60 g ha-1) and sulfentrazone (150 g ha-1) were the most selective doses for sunflower crop.

Keywords: flumioxazin, Helianthus annuus, S-metolachlor, sulfentrazone, weeds

Procedia PDF Downloads 335
648 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 142
647 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: cyclic loading, finite element analysis, Prager kinematic hardening model, torsion of shaft

Procedia PDF Downloads 394
646 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado

Abstract:

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM

Procedia PDF Downloads 332
645 Behavioral Changes and Gill Histopathological Alterations of Red Hybrid Tilapia (Oreochromis sp.) Exposed to Glyphosate Herbicide

Authors: Abubakar Muhammad Umar, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Abd Shukor

Abstract:

Glyphosate [N-(phosphonomethyl) glycine] is among the most broadly and generally recognized broad-spectrum herbicides used in agriculture due to its low cost and effectiveness in weed management. The pollution of glyphosate in the aquatic environment can be via water run-off from agricultural lands, or by spray drift, aerial spraying or due to industrial discharge, which may be seen as a threat to aquatic biota. Fish is one of the best organisms to study the toxicological aspects of glyphosate. A 49 days experiment was conducted under laboratory condition to ascertain the effects of technical grade glyphosate on behaviour and histopathological conditions in the gills of red hybrid tilapia using light inverted microscope. Air gasping, erratic swimming, fin movement, mucus secretion, hemorrhages and loss of scales were observed as behavioural changes in the exposed fish. There was no any histopathological complication observed in the gill of the control fish, but various level of alterations were seen in the gills of the fish exposed to glyphosate herbicide. These include lifting of primary lamella, congestion of secondary lamella as well as hyperplasia in both primary and secondary gill lamella and hypertrophy of secondary gill lamella. Based on the findings of this study, glyphosate herbicide exerts behavioural and histopathological changes in the gill of red hybrid tilapia, and therefore the fish is considered as good bioindicator in aquatic environment monitoring. Excessive usage of glyphosate herbicide near aquatic habitats should be discouraged.

Keywords: glyphosate, behavioral, histopathological, tilapia

Procedia PDF Downloads 14
644 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 218
643 Temporary Autonomous Areas in Time and Space: Psytrance Rave Parties as an Expression Area of Altered States of Consciousness in Turkey

Authors: Ugur Cihat Sakarya

Abstract:

This research focuses on psychedelic trance music events in Turkey in the context of altered states of consciousness (ASC). The fieldwork that was conducted from 2018 to 2019 is the main source of the research. Participant observation method was followed in 15 selected events. To direct the musical experiences of participants, performances were also presented as a Dj. Ten of these events are open-air festivals. Five of them are indoor parties. The observations made during fieldwork and suitable answers for inference from the interviews with participants, artists, DJs, and volunteers were selected, compiled, and presented. In the result, findings showed that these activities are perceived as temporary autonomous areas by the participants both in time and space and that these activities are suitable areas for expressing themselves as a group (psyfamily) against mainstream culture. It has been observed that the elements that complement the altered states of consciousness in these events are music, visual arts, drug use, and desire to experience spiritual experiences. It is thought that this first academic study -about this topic in Turkey- will open a door for future researches.

Keywords: consciousness, psychedelic, psytrance, rave, Turkey

Procedia PDF Downloads 120
642 Persistent Toxicity of Imidacloprid to Aphis gossypii Glover and Amarasca biguttula biguttula Ishida on Okra

Authors: M. A. Pawar, C. S. Patil

Abstract:

Investigations were carried out to evaluate the persistent toxicity of imidacloprid, thiamethoxam and dimethoate to Aphis gossypii and Amrasca biguttula biguttula under laboratory condition during 2012. The experiment was conducted in a completely randomized block design with three replications in the glass house of department of Entomology M. P. K. V. Rahuri. Okra plants were raised in glass house following all recommended agronomic practices. The 21 days old plants were used for assessing the effect of insecticides on aphids and jassids. The insecticides were diluted with distilled water to make desired concentrations and used for foliar application. The insecticides included in the study were imidacloprid 17.8 SL, imidacloprid 70 WG, thiamethoxam 25 WG and dimethoate 30 EC. Untreated check was maintained by spraying with distilled water. The mortality of aphids and jassids on treated leaf were recorded at 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, and 25 days after spray till zero per cent mortality observed for each treatment. Treated leaves from the glasshouse were brought to laboratory and were put in tube with moist cotton swab at the bottom of leaf and sucking apparatus was fit to the tube. Ten jassids were sucked in each tube from the plants in the field. Evaluated insecticides differed in their persistence and index of persistence toxicity against both insects of different treatments. Recommended dose of imidacloprid (25 g a.i/ha) persisted for 21 days against both aphids and jassids. However dimethoate, a conventional insecticide persisted for 11 days.

Keywords: Amrasca biguttula biguttula, Aphis gossypii, imidacloprid, persistent toxicity

Procedia PDF Downloads 173
641 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 126
640 Effect of Temperature and Relative Humidity on Aerosol Spread

Authors: Getu Hailu, Catelynn Hettick, Niklas Pieper, Paul Kim, Augustine Hamner

Abstract:

Airborne transmission is a problem that all viral respiratory diseases have in common. In late 2019, a disease outbreak, now known as SARS-CoV-2, suddenly expanded across China and the rest of the world in a matter of months. Research on the spread and transmission of SARS-CoV-2 airborne particles is ongoing, as well as the development of strategies for the prevention of the spread of these pathogens using indoor air quality (IAQ) methods. By evaluating the surface area of pollutants on the surface of a mannequin in a mock-based clinic room, this study aims to better understand how altering temperature and relative humidity affect aerosol spread and contamination. Four experiments were carried out at a constant temperature of 70 degrees Fahrenheit but with four different humidity levels of 0%, 30%, 45 percent, and 60%. The mannequin was placed in direct aerosol flow since it was discovered that this was the position with the largest exposed surface area. The findings demonstrate that as relative humidity increased while the temperature remained constant, the amount of surface area infected by virus particles decreased. These findings point to approaches to reduce the spread of viral particles, such as SARS-CoV-2 and emphasize the significance of IAQ controls in enclosed environments.

Keywords: IAQ, ventilation, COVID-19, humidity, temperature

Procedia PDF Downloads 130
639 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 385
638 Tuberculous Osteomyelitis Mimicking Tumours and Tumour-Like Lesions of Bone: Clinico-Radiologic Study of 22 Patients

Authors: Parveen Kundu, Zile Singh, Kunika Kundu, Swaran Kaur

Abstract:

Context: Tuberculous osteomyelitis is a relatively uncommon condition that can present with various clinical and radiological features, often mimicking bone tumors or tumor-like lesions. In endemic countries like India, tuberculosis should be considered as a potential differential diagnosis for lytic bone lesions. This study aimed to highlight the different presentations of tuberculosis that can mimic tumors or tumor-like lesions in bone and emphasize the successful outcome of antitubercular therapy (ATT) in treating these cases. Research Aim: The main objective of this research was to explore the varied presentations of tuberculosis that mimic bone tumors or tumor-like lesions both clinically and radiologically, focusing on different bones. The study aimed to raise awareness among clinicians about this possibility and highlight the importance of histopathological confirmation before initiating treatment for lytic bone lesions. Methodology: This study utilized a retrospective review of 22 patients with suspected lytic bone lesions, who were subsequently diagnosed with tuberculous osteomyelitis through histopathological examination. The cases were collected over a period of ten years. Eleven cases required curettage for extensive lesions with sequestrations, while all 22 patients received 12 months of antitubercular therapy. Findings: The study included 14 male and 8 female patients, ranging in age from 3 to 61 years, with an average age of 22.05. The clinical and radiological presentations varied, with examples including bone cysts in the metaphyseal area of long bones, lesions resembling chondroblastomas, giant cell tumors, and osteoid osteoma, as well as multifocal lytic lesions resembling metastasis or multiple myeloma. One patient had lesions in both the clavicle and hand. Lesions mimicking chondromas were also observed in the phalanges of the hand and foot metatarsal. All patients showed resolution of the lesions and no residual disability following ATT. Theoretical Importance: This study highlights the importance of considering tuberculosis as a potential differential diagnosis for lytic bone lesions, particularly in endemic regions. It emphasizes the need for histopathological confirmation to accurately diagnose tuberculous osteomyelitis, as this is considered the gold standard. Data Collection and Analysis Procedures: Data for this study were collected retrospectively from medical records and radiological images of the 22 patients. The cases were analyzed based on clinical presentation, radiological findings, and histopathological confirmation. The outcomes of antitubercular therapy were also assessed. The data were summarized and presented descriptively. Question Addressed: This study aimed to address the question of how tuberculosis can mimic different bone tumors and tumor-like lesions clinically and radiologically. It also aimed to assess the successful outcome of antitubercular therapy in treating these cases. Conclusion: Tuberculous osteomyelitis can present with varied clinical and radiological features, often mimicking bone tumors or tumor-like lesions. Clinicians should consider tuberculosis as a potential diagnosis for lytic bone lesions, especially in endemic areas. Histopathological confirmation is essential for accurate diagnosis. Antitubercular therapy is an effective treatment for tuberculous osteomyelitis, leading to the resolution of the lesions with no residual disability.

Keywords: tuberculosis, tumor, curettage, bone

Procedia PDF Downloads 72
637 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards

Authors: José M. Carmona, Diana Puigserver, Jofre Herrero

Abstract:

Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.

Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard

Procedia PDF Downloads 138
636 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs

Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali

Abstract:

This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2-5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (b/b), and storage duration (0 and 7 days) with three replications respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.

Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder

Procedia PDF Downloads 321
635 Polyethylene Terephthalate (PET) Fabrics Decoloring for PET Textile Recycle

Authors: Chung-Yang Chuang, Hui-Min Wang, Min-Yan Dong, Chang-Jung Chang

Abstract:

PET fiber is the most widely used fiber worldwide. This man-made fiber is prepared from petroleum chemicals, which may cause environmental pollution and resource exhausting issues, such as the use of non-renewable sources, greenhouse gas emission and discharge of wastewater. Therefore, the textile made by recycle-PET is the trend in the future. Recycle-PET fiber, compared with petroleum-made PET, shows lower carbon emissions and resource exhaustion. However, “fabric decoloring” is the key barrier to textile recycling. The dyes existing in the fabrics may cause PET chain degradation and appearance drawbacks during the textile recycling process. In this research, the water-based decoloring agent was used to remove the dispersed dye in the PET fabrics in order to obtain the colorless PET fabrics after the decoloring process. The decoloring rate of PET fabrics after the decoloring process was up to 99.0%. This research provides a better solution to resolve the issues of appearance and physical properties degradation of fabrics-recycle PET materials due to the residual dye. It may be possible to convert waste PET textiles into new high-quality PET fiber and build up the loop of PET textile recycling.

Keywords: PET, decoloring, disperse dye, textile recycle

Procedia PDF Downloads 121
634 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan

Abstract:

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

Keywords: outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD

Procedia PDF Downloads 433
633 Use of Thermosonication to Obtain Minimally Processed Mosambi Juice

Authors: Ruby Siwach, Manish Kumar, Raman Seth

Abstract:

Extent of inactivation of pectin methylesterase (PME) in mosambi juice during thermal and thermosonication treatments was studied to obtain a minimally processed product. Effect of both treatments on cloud value, pH, titratable acidity, oBrix, and sensory attributes (flavour and taste) was studied. Thermal treatments (HT) were carried out at three temperatures 60, 70, and 80°C in a serological water bath for 5, 10, 15, and 20 min at each temperature. Thermosonication treatments (TS) were also given for same time-temperature combinations in water bath of a thermosonicator. Treated samples were stored in a deep freezer at 18°C for PME assay. PME activity of untreated sample was also assayed and residual PME activity and % loss in PME activity was calculated at each time-temperature combination. The extent of inactivation of PME increased with increase in treatment temperature and duration. Thermosonication treatments were found far more effective than thermal treatments of same time temperature combination in PME inactivation and retention of sensory attributes.

Keywords: pectin methylesterase, heat inactivation kinetics, thermosonication, thermal treatment

Procedia PDF Downloads 416
632 Amelioration of Salinity Stress in Spinach (Spinace oleracae) by Exogenous Application of Triacontanol

Authors: Ameer Khan, Iffat Jamal, Ambreen Azam

Abstract:

An experiment was conducted in the Department of Botany, University of Sargodha to observe the amelioration of salinity stress in spinach (Spinacia oleracea) by exogenous application of Triacontanol. Two spinach cultivars (Spinacea oleracea and Rumax dentatus) were obtained from the Agriculture Research institute, Faisalabad. This experiment was conducted in pots. Each pot was filled with 9kg mixture of (sand + soil). Different salinity levels (0mM, 60mM, and 120mM) were created with NaCl according to the saturation percentage of soil after two weeks of seed germination. After the two weeks of salinity treatment, different levels of Triacontanol (0µM, 10µM, 20µM) were applied as foliar spray. Triacontanol was applied along with Tween 80 as surfactant. After the two weeks of Triacontanol application different growth, physiological and biochemical parameters were collected from the experimental study. Both treatments of Triacontanol (10µM, 20µM) were effective to ameliorate the effect of salinity, but 20µM Triacontanol was more effective to increase the shoot length, shoot, root fresh and dry weight. Chlorophyll contents were (chl a, chl b, total chl). Different biochemical parameters were also collected from experimental study. Saline growth medium increased the accumulation of protein and decreased the total free amino acids, and total soluble sugar under salt stress. Application of Triacontanol increased the protein contents. Overall, Application of triacontanol mitigated the effect of salinity.

Keywords: salinity, triacontanol, spinach, biochemical, physiological

Procedia PDF Downloads 278
631 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 73
630 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking

Authors: Soheib Fergani

Abstract:

This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.

Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation

Procedia PDF Downloads 42