Search results for: high temperature material behaviour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28794

Search results for: high temperature material behaviour

27924 Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization

Authors: Siti N. M. Rozali, A. H. J. Paterson, J. P. Hindmarsh

Abstract:

Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions.

Keywords: extensional rheology, fibre suspensions, portable extensional rheometer, shear rheology

Procedia PDF Downloads 193
27923 Rheological Characterization of Gels Based on Medicinal Plant Extracts Mixture (Zingibar Officinale and Cinnamomum Cassia)

Authors: Zahia Aliche, Fatiha Boudjema, Benyoucef Khelidj, Selma Mettai, Zohra Bouriahi, Saliha Mohammed Belkebir, Ridha Mazouz

Abstract:

The purpose of this work is the study of the viscoelastic behaviour formulating gels based plant extractions. The extracts of Zingibar officinale and Cinnamomum cassia were included in the gel at different concentrations of these plants in order to be applied in anti-inflammatory drugs. The yield of ethanolic extraction of Zingibar o. is 3.98% and for Cinnamomum c., essential oil by hydrodistillation is 1.67 %. The ethanolic extract of Zingibar.o, the essential oil of Cinnamomum c. and the mixture showed an anti-DPPH radicals’ activity, presented by EC50 values of 11.32, 13.48 and 14.39 mg/ml respectively. A gel based on different concentrations of these extracts was prepared. Microbiological tests conducted against Staphylococcus aureus and Escherichia colishowed moderate inhibition of Cinnamomum c. gel and less the gel based on Cinnamomum c./ Zingibar o. (20/80). The yeast Candida albicansis resistant to gels. The viscoelastic formulation property was carried out in dynamic and creep and modeled with the Kelvin-Voigt model. The influence of some parameters on the stability of the gel (time, temperature and applied stress) has been studied.

Keywords: Cinnamomum cassia, Zingibar officinale, antioxidant activity, antimicrobien activity, gel, viscoelastic behaviour

Procedia PDF Downloads 71
27922 Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations

Authors: Zhou Xiong, Kang Shao Bo, Yang Bo

Abstract:

To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.

Keywords: axial compression, box columns, global buckling, numerical simulations, Q460GJ steel

Procedia PDF Downloads 391
27921 Uniform and Controlled Cooling of a Steel Block by Multiple Jet Impingement and Airflow

Authors: E. K. K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

During the cooling of hot metals by the circulation of water in canals formed by boring holes in the metal, the rapid phase change of the water due to the high initial temperature of the metal leads to a non homogenous distribution of the phases within the canals. The liquid phase dominates towards the entrance of the canal while the gaseous phase dominates towards the exit. As a result of the different thermal properties of both phases, the metal is not uniformly cooled. This poses a problem during the cooling of moulds, where a uniform temperature distribution is needed in order to ensure the integrity of the part being formed. In this study, the simultaneous use of multiple water jets and an airflow for the uniform and controlled cooling of a steel block is investigated. A circular hole is bored at the centre of the steel block along its length and a perforated steel pipe is inserted along the central axis of the hole. Water jets that impact the internal surface of the steel block are generated from the perforations in the steel pipe when the water within it is put under pressure. These jets are oriented in the opposite direction to that of gravity. An intermittent airflow is imposed in the annular space between the steel pipe and the surface of hole bored in the steel block. The evolution of the temperature with respect to time of the external surface of the block is measured with the help of thermocouples and an infrared camera. Due to the high initial temperature of the steel block (350 °C), the water changes phase when it impacts the internal surface of the block. This leads to high heat fluxes. The strategy used to control the cooling speed of the block is the intermittent impingement of its internal surface by the jets. The intervals of impingement and of non impingement are varied in order to achieve the desired result. An airflow is used during the non impingement periods as an additional regulator of the cooling speed and to improve the temperature homogeneity of the impinged surface. After testing different jet positions, jet speeds and impingement intervals, it’s observed that the external surface of the steel block has a uniform temperature distribution along its length. However, the temperature distribution along its width isn’t uniform with the maximum temperature difference being between the centre of the block and its edge. Changing the positions of the jets has no significant effect on the temperature distribution on the external surface of the steel block. It’s also observed that reducing the jet impingement interval and increasing the non impingement interval slows down the cooling of the block and improves upon the temperature homogeneity of its external surface while increasing the duration of jet impingement speeds up the cooling process.

Keywords: cooling speed, homogenous cooling, jet impingement, phase change

Procedia PDF Downloads 115
27920 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 154
27919 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)

Procedia PDF Downloads 141
27918 Effect of Sr-Doping on Multiferroic Properties of Ca₁₋ₓSrₓMn₇O₁₂

Authors: Parul Jain, Jitendra Saha, L. C. Gupta, Satyabrata Patnaik, Ashok K. Ganguli, Ratnamala Chatterjee

Abstract:

This study shows how sensitively and drastically multiferroic properties of CaMn₇O₁₂ get modified by isovalent Sr-doping, namely, in Ca₁₋ₓSrₓMn₇O₁₂ for x as small as 0.01 and 0.02. CaMn₇O₁₂ is a type-II multiferroic, wherein polarization is caused by magnetic spin ordering. In this report magnetic and ferroelectric properties of Ca₁₋ₓSrₓMn₇O₁₂ (0 ≤ x ≤ 0.1) are investigated. Samples were prepared by wet sol gel technique using their respective nitrates; powders thus obtained were calcined and sintered in optimized conditions. The X-ray diffraction patterns of all samples doped with Sr concentrations in the range (0 ≤ x ≤ 10%) were found to be free from secondary phases. Magnetization versus temperature and magnetization versus field measurements were carried out using Quantum Design SQUID magnetometer. Pyroelectric current measurements were done for finding the polarization in the samples. Findings of the measurements are: (i) increase of Sr-doping in CaMn₇O₁₂ lattice i.e. for x ≤ 0.02, increases the polarization, whereas decreases the magnetization and the coercivity of the samples; (ii) the material with x = 0.02 exhibits ferroelectric polarization Ps which is more than double the Ps in the un-doped material and the magnetization M is reduced to less than half of that of the pure material; remarkably (iii) the modifications in Ps and M are reversed as x increases beyond x = 0.02 and for x = 0.10, Ps is reduced even below that for the pure sample; (iv) there is no visible change of the two magnetic transitions TN1 (90 K) and TN2 (48 K) of the pure material as a function of x. The strong simultaneous variations of Ps and M for x = 0.02 strongly suggest that either a basic modification of the magnetic structure of the material or a significant change of the coupling of P and M or possibly both.

Keywords: ferroelectric, isovalent, multiferroic, polarization, pyroelectric

Procedia PDF Downloads 450
27917 Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions

Authors: Hasan AL-Khshemawee, Manjree Agarwal, Xin Du, Yonglin Ren

Abstract:

The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field.

Keywords: stable isotope, sterile insect technique (SIT), medfly, mating behaviour

Procedia PDF Downloads 239
27916 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City

Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron

Abstract:

Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.

Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density

Procedia PDF Downloads 138
27915 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting

Procedia PDF Downloads 321
27914 2D RF ICP Torch Modelling with Fluid Plasma

Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy

Abstract:

A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation

Procedia PDF Downloads 418
27913 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki

Abstract:

This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 377
27912 Production of Biodiesel from Avocado Waste in Hossana City, Ethiopia

Authors: Tarikayehu Amanuel, Abraham Mohammed

Abstract:

The production of biodiesel from waste materials is becoming an increasingly important research area in the field of renewable energy. One potential waste material source is avocado, a fruit with a large seed and peel that are typically discarded after consumption. This research aims to investigate the feasibility of using avocado waste as a feedstock for the production of biodiesel. The study focuses on extracting oil from the waste material using the transesterification technique and then characterizing the properties of oil to determine its suitability for conversion to biodiesel. The study was conducted experimentally, and a maximum oil yield of 11.583% (150g of oil produced from 1.295kg of avocado waste powder) was obtained from avocado waste powder at an extraction time of 4hr. An 87% fatty acid methyl ester (biodiesel) conversion was also obtained using a methanol/oil ratio of 6:1, 1.3g NaOH, reaction time 60min, and 65°C reaction temperature. Furthermore, from 145 ml of avocado waste oil, 126.15 ml of biodiesel was produced, indicating a high percentage of conversion (87%). Conclusively, the produced biodiesel showed comparable physical and chemical characteristics to that of standard biodiesel samples considered for the study. The results of this research could help to identify a new source of biofuel production while also addressing the issue of waste disposal in the food industry.

Keywords: biodiesel, avocado, transesterification, soxhlet extraction

Procedia PDF Downloads 52
27911 Transitivity Analysis in Reading Passage of English Text Book for Senior High School

Authors: Elitaria Bestri Agustina Siregar, Boni Fasius Siregar

Abstract:

The paper concerned with the transitivity in the reading passage of English textbook for Senior High School. The six types of process were occurred in the passages with percentage as follows: Material Process is 166 (42%), Relational Process is 155 (39%), Mental Process is 39 (10%), Verbal Process is 21 (5%), Existential Process is 13 (3), and Behavioral Process is 5 (1%). The material processes were found to be the most frequently used process type in the samples in our corpus (41,60 %). This indicates that the twenty reading passages are centrally concerned with action and events. Related to developmental psychology theory, this book fits the needs of students of this age.

Keywords: transitivity, types of processes, reading passages, developmental psycholoy

Procedia PDF Downloads 395
27910 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 306
27909 Long-Term Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea

Authors: Bayoumy Mohamed, Khaled Alam El-Din

Abstract:

In the present study, 24 years of gridded sea level anomalies (SLA) from satellite altimetry and sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) daily data (1993-2016) are used. These data have been used to investigate the sea level rising and warming rates of SST, and their spatial distribution in the Mediterranean Sea. The results revealed that there is a significant sea level rise in the Mediterranean Sea of 2.86 ± 0.45 mm/year together with a significant warming of 0.037 ± 0.007 °C/year. The high spatial correlation between sea level and SST variations suggests that at least part of the sea level change reported during the period of study was due to heating of surface layers. This indicated that the steric effect had a significant influence on sea level change in the Mediterranean Sea.

Keywords: altimetry, AVHRR, Mediterranean Sea, sea level and SST changes, trend analysis

Procedia PDF Downloads 179
27908 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene

Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell

Abstract:

Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.

Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter

Procedia PDF Downloads 294
27907 An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications

Authors: Tasnim Kallel, Rim Taktak

Abstract:

In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance.

Keywords: crack growth, fiber orientation, fracture behavior, e-glass fiber fabric, laminate composite, mechanical behavior

Procedia PDF Downloads 235
27906 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel

Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar

Abstract:

High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.

Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation

Procedia PDF Downloads 337
27905 Utilization of Aluminium Dross as a Main Raw Material for Synthesize the Geopolymers via Mechanochemistry Method

Authors: Pimchanok Puksisuwan, Pitak Laorattanakul, Benya Cherdhirunkorn

Abstract:

The use of aluminium dross as a raw material for geopolymer synthesis via mechanochemistry method was studied. The geopolymers were prepared using aluminium dross from secondary aluminium industry, fly ash from a biomass power plant and liquid alkaline activators, which is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) (Na2SiO3/NaOH ratio 4:1, 3:1 and 2:1). Aluminium dross consists mostly of alumina (Al2O3), silicon oxide (SiO2) and aluminium nitride (AlN). The raw materials were mixed and milled using the high energy ball milling method for 5, 10 and 15 minutes in order to reduce the particle size. The milled powders were uniaxially pressed into a cylinder die with the pressure of 2200 psi. The cylinder samples were cured in the sealed plastic bags for 3, 7 and 14 days at the room temperature and 60°C for 24 hour. The mechanical property of geopolymers was investigated. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out in order to study the microstructure and phase structures of the geopolymers, respectively. The results showed that aluminium dross could enhance the mechanical property of geopolymers product by mechanochemistry method and meet the TISI requirements.

Keywords: aluminium dross, fly ash, geopolymer, mechanochemistry

Procedia PDF Downloads 236
27904 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: heat sources, Lattice Boltzmann method, solid oxide fuel cell, temperature

Procedia PDF Downloads 297
27903 Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy

Authors: Xiping Guo, Jing Li

Abstract:

The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed.

Keywords: Nb-Si based ultra high temperature alloy, oxidation resistance, pack cementation, silicide coating, Al and Y modified

Procedia PDF Downloads 389
27902 The Influence of National Culture on Consumer Buying Behaviour: An Exploratory Study of Nigerian and British Consumers

Authors: Mohamed Haffar, Lombe Ngome Enongene, Mohammed Hamdan, Gbolahan Gbadamosi

Abstract:

Despite the considerable body of literature investigating the influence of National Culture (NC) dimensions on consumer behaviour, there is a lack of studies comparing the influence of NC in Africa with Western European countries. This study is intended to fill the vacuum in knowledge by exploring how NC affects consumer buyer behavior in Nigeria and the United Kingdom. The primary data were collected through in depth, semi-structured interviews conducted with three groups of individuals: British students, Nigerian students in the United Kingdom, and Nigerian-based students. This approach and new frontier to analyze culture and consumer behaviour could help understand residual cultural threads of people (that are ingrained in their being) irrespective of exposure to other cultures. The findings of this study show that Nigerian and British consumers differ remarkably in cultural orientations such as symbols, values and psychological standpoints. This ultimately affects the choices made at every stage of the decision building process, and proves beneficial for international retail marketing.

Keywords: national culture, consumer behaviour, international business, Nigeria

Procedia PDF Downloads 267
27901 A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties

Authors: Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra

Abstract:

The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H₂ gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H₂ gas is studied under low detection limit (2–500 ppm) of H₂ in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H₂ at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H₂ gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H₂ gas sensor.

Keywords: sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor

Procedia PDF Downloads 378
27900 Identifying the Influence of Vegetation Type on Multiple Green Roof Functions with a Field Experiment in Zurich

Authors: Lauren M. Cook, Tove A. Larsen

Abstract:

Due to their potential to provide numerous ecosystem services, green roofs have been proposed as a solution to mitigate a growing list of environmental challenges, like urban flooding and urban heat island effect. Because of their cooling effect, green roofs placed below rooftop photovoltaic (PV) panels also have the potential to increase PV panel efficiency. Sedums, a type of succulent plant, are commonly used on green roofs because they are drought and heat tolerant. However, other plant species, such as grasses or plants with reflective properties, have been shown to reduce more runoff and cool the rooftop more than succulent species due to high evapotranspiration (ET) and reflectivity, respectively. The goal of this study is to evaluate whether vegetation with high ET or reflectivity can influence multiple co-benefits of the green roof. Four small scale green roofs in Zurich are used as an experiment to evaluate differences in (1) the timing and amount of runoff discharged from the roof, (2) the air temperature above the green roof, and (3) the temperature and efficiency of solar panels placed above the green roof. One grass species, Silene vulgaris, and one silvery species, Stachys byzantia, are compared to a baseline of Sedum album and black roof. Initial results from August to November 2019 show that the grass species has retained more cumulative runoff and led to a lower canopy temperature than the other species. Although the results are not yet statistically significant, they may suggest that plants with higher ET will have a greater effect on canopy temperature than plants with high reflectivity. Future work will confirm this hypothesis and evaluate whether it holds true for solar panel temperature and efficiency.

Keywords: co-benefit estimation, green cities, green roofs, solar panels

Procedia PDF Downloads 92
27899 An Elaboration Likelihood Model to Evaluate Consumer Behavior on Facebook Marketplace: Trust on Seller as a Moderator

Authors: Sharmistha Chowdhury, Shuva Chowdhury

Abstract:

Buying-selling new as well as second-hand goods like tools, furniture, household, electronics, clothing, baby stuff, vehicles, and hobbies through the Facebook marketplace has become a new paradigm for c2c sellers. This phenomenon encourages and empowers decentralised home-oriented sellers. This study adopts Elaboration Likelihood Model (ELM) to explain consumer behaviour on Facebook Marketplace (FM). ELM suggests that consumers process information through the central and peripheral routes, which eventually shape their attitudes towards posts. The central route focuses on information quality, and the peripheral route focuses on cues. Sellers’ FM posts usually include product features, prices, conditions, pictures, and pick-up location. This study uses information relevance and accuracy as central route factors. The post’s attractiveness represents cues and creates positive or negative associations with the product. A post with remarkable pictures increases the attractiveness of the post. So, post aesthetics is used as a peripheral route factor. People influenced via the central or peripheral route forms an attitude that includes multiple processes – response and purchase intention. People respond to FM posts through save, share and chat. Purchase intention reflects a positive image of the product and higher purchase intention. This study proposes trust on sellers as a moderator to test the strength of its influence on consumer attitudes and behaviour. Trust on sellers is assessed whether sellers have badges or not. A sample questionnaire will be developed and distributed among a group of random FM sellers who are selling vehicles on this platform to conduct the study. The chosen product of this study is the vehicle, a high-value purchase item. High-value purchase requires consumers to consider forming their attitude without any sign of impulsiveness seriously. Hence, vehicles are the perfect choice to test the strength of consumers attitudes and behaviour. The findings of the study add to the elaboration likelihood model and online second-hand marketplace literature.

Keywords: consumer behaviour, elaboration likelihood model, facebook marketplace, c2c marketing

Procedia PDF Downloads 124
27898 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France

Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet

Abstract:

Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.

Keywords: air temperature, neural network model, urban heat island, urban weather generator

Procedia PDF Downloads 73
27897 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability

Procedia PDF Downloads 100
27896 Evaluation of the Impact of Functional Communication Training on Behaviors of Concern for Students at a Non-Maintained Special School

Authors: Kate Duggan

Abstract:

Introduction: Functional Communication Training (FCT) is an approach which aims to reduce behaviours of concern by teaching more effective ways to communicate. It requires identification of the function of the behaviour of concern, through gathering information from key stakeholders and completing observations of the individual’s behaviour including antecedents to, and consequences of the behaviour. Appropriate communicative alternatives are then identified and taught to the individual using systematic instruction techniques. Behaviours of concern demonstrated by individuals with autism spectrum conditions (ASC) frequently have a communication function. When contributing to positive behavior support plans, speech and language therapists and other professionals working with individuals with ASC need to identify alternative communicative behaviours which are equally reinforcing as the existing behaviours of concern. Successful implementation of FCT is dependent on an effective ‘response match’. The new way of communicating must be equally as effective as the behaviour previously used and require the same amount or less effort from the individual. It must also be understood by the communication partners the individual encounters and be appropriate to their communicative contexts. Method: Four case studies within a non-maintained special school environment were described and analysed. A response match framework was used to identify the effectiveness of functional communication training delivered by the student’s speech and language therapist, teacher and learning support assistants. The success of systematic instruction techniques used to develop new communicative behaviours was evaluated using the CODES framework. Findings: Functional communication training can be used as part of a positive behaviour support approach for students within this setting. All case studies reviewed demonstrated ‘response success’, in that the desired response was gained from the new communicative behaviour. Barriers to the successful embedding of new communicative behaviours were encountered. In some instances, the new communicative behaviour could not be consistently understood across all communication partners which reduced ‘response recognisability’. There was also evidence of increased physical or cognitive difficulty in employing the new communicative behaviour which reduced the ‘response effectivity’. Successful use of ‘thinning schedules of reinforcement’, taught students to tolerate a delay to reinforcement once the new communication behaviour was learned.

Keywords: augmentative and alternative communication, autism spectrum conditions, behaviours of concern, functional communication training

Procedia PDF Downloads 107
27895 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 158