Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30811

Search results for: data mining applications and discovery

29941 Estimation of Rock Strength from Diamond Drilling

Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi

Abstract:

The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.

Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength

Procedia PDF Downloads 139
29940 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 238
29939 Evaluating the Performance of Existing Full-Reference Quality Metrics on High Dynamic Range (HDR) Video Content

Authors: Maryam Azimi, Amin Banitalebi-Dehkordi, Yuanyuan Dong, Mahsa T. Pourazad, Panos Nasiopoulos

Abstract:

While there exists a wide variety of Low Dynamic Range (LDR) quality metrics, only a limited number of metrics are designed specifically for the High Dynamic Range (HDR) content. With the introduction of HDR video compression standardization effort by international standardization bodies, the need for an efficient video quality metric for HDR applications has become more pronounced. The objective of this study is to compare the performance of the existing full-reference LDR and HDR video quality metrics on HDR content and identify the most effective one for HDR applications. To this end, a new HDR video data set is created, which consists of representative indoor and outdoor video sequences with different brightness, motion levels and different representing types of distortions. The quality of each distorted video in this data set is evaluated both subjectively and objectively. The correlation between the subjective and objective results confirm that VIF quality metric outperforms all to their tested metrics in the presence of the tested types of distortions.

Keywords: HDR, dynamic range, LDR, subjective evaluation, video compression, HEVC, video quality metrics

Procedia PDF Downloads 529
29938 Domain Adaptive Dense Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, contrastive learning, unsupervised training

Procedia PDF Downloads 105
29937 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
29936 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-Creation

Authors: Amna Javed, Hisashi Masuda, Youji Kohda

Abstract:

This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic. As Islamic banking is based on Islamic principles that are more concerned with non-economic values (well-being, partnership, fairness, trust worthy, and justice) than economic values as money in terms of interest. This study is important to know the providers point of view about the co-created values, because, it may be more sustainable and appropriate for today’s unpredictable socioeconomic environment. Data were collected from 4 banks (2 Islamic and 2 conventional banks). Text mining technique is applied for data analysis, and values with 100% occurrences in Islamic banking are chosen. The results reflect that Islamic banking is more centric towards non-economic values than economic values and it promotes team work and partnership concept by applying Islamic spirit and trust worthiness concept.

Keywords: economic values, Islamic banking, non-economic values, value system

Procedia PDF Downloads 464
29935 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications

Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.

Abstract:

In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.

Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna

Procedia PDF Downloads 112
29934 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 481
29933 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings

Authors: Chen Wang, Jared Evans, Yan Asmann

Abstract:

With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.

Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing

Procedia PDF Downloads 257
29932 Message Framework for Disaster Management: An Application Model for Mines

Authors: A. Baloglu, A. Çınar

Abstract:

Different tools and technologies were implemented for Crisis Response and Management (CRM) which is generally using available network infrastructure for information exchange. Depending on type of disaster or crisis, network infrastructure could be affected and it could not be able to provide reliable connectivity. Thus any tool or technology that depends on the connectivity could not be able to fulfill its functionalities. As a solution, a new message exchange framework has been developed. Framework provides offline/online information exchange platform for CRM Information Systems (CRMIS) and it uses XML compression and packet prioritization algorithms and is based on open source web technologies. By introducing offline capabilities to the web technologies, framework will be able to perform message exchange on unreliable networks. The experiments done on the simulation environment provide promising results on low bandwidth networks (56kbps and 28.8 kbps) with up to 50% packet loss and the solution is to successfully transfer all the information on these low quality networks where the traditional 2 and 3 tier applications failed.

Keywords: crisis response and management, XML messaging, web services, XML compression, mining

Procedia PDF Downloads 341
29931 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 241
29930 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 598
29929 A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization

Authors: Ahmed Ishtiaq, Maeeda Khalid, Umair Sajjad

Abstract:

In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine.

Keywords: auto-suggestion, search engine optimization, SEO, query, web mining, web crawler

Procedia PDF Downloads 151
29928 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine

Authors: B. Keawaram, P. Dumrongchai

Abstract:

The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.

Keywords: mine, survey, terrestrial laser scanner, total station

Procedia PDF Downloads 388
29927 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 66
29926 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 141
29925 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 449
29924 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology

Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar

Abstract:

Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.

Keywords: data privacy, distributed system, federated learning, machine learning

Procedia PDF Downloads 136
29923 The Discovery and Application of Perspective Representation in Modern Italy

Authors: Matthias Stange

Abstract:

In the early modern period, a different image of man began to prevail in Europe. The focus was on the self-determined human being and his abilities. At first, these developments could be seen in Italian painting and architecture, which again oriented itself to the concepts and forms of antiquity. For example, through the discovery of perspective representation by Brunelleschi or later the orthogonal projection by Alberti, after the ancient knowledge of optics had been forgotten in the Middle Ages. The understanding of reality in the Middle Ages was not focused on the sensually perceptible world but was determined by ecclesiastical dogmas. The empirical part of this study examines the rediscovery and development of perspective. With the paradigm of antiquity, the figure of the architect was also recognised again - the cultural man trained theoretically and practically in numerous subjects, as Vitruvius describes him. In this context, the role of the architect, the influence on the painting of the Quattrocento as well as the influence on architectural representation in the Baroque period are examined. Baroque is commonly associated with the idea of illusionistic appearance as opposed to the tangible reality presented in the Renaissance. The study has shown that the central perspective projection developed by Filippo Brunelleschi enabled another understanding of seeing and the dissemination of painted images. Brunelleschi's development made it possible to understand the sight of nature as a reflection of what is presented to the viewer's eye. Alberti later shortened Brunelleschi's central perspective representation for practical use in painting. In early modern Italian architecture and painting, these developments apparently supported each other. The pictorial representation of architecture initially served the development of an art form before it became established in building practice itself.

Keywords: Alberti, Brunelleschi, central perspective projection, orthogonal projection, quattrocento, baroque

Procedia PDF Downloads 87
29922 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 411
29921 Accelerating the Uptake of Smart City Applications through Cloud Computing

Authors: Panagiotis Tsarchopoulos, Nicos Komninos, Christina Kakderi

Abstract:

Smart cities are high on the political agenda around the globe. However, planning smart cities and deploying applications dealing with the complex problems of the urban environment is a very challenging task that is difficult to be undertaken solely by the cities. We argue that the uptake of smart city strategies is facilitated, first, through the development of smart city application repositories allowing re-use of already developed and tested software, and, second, through cloud computing which disengages city authorities from any resource constraints, technical or financial, and has a higher impact and greater effect at the city level The combination of these two solutions allows city governments and municipalities to select and deploy a large number of applications dedicated to different city functions, which collectively could create a multiplier effect with a greater impact on the urban environment.

Keywords: smart cities, applications, cloud computing, migration to the cloud, application repositories

Procedia PDF Downloads 357
29920 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining

Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre

Abstract:

Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systems

Keywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format

Procedia PDF Downloads 72
29919 Literature Review on Text Comparison Techniques: Analysis of Text Extraction, Main Comparison and Visual Representation Tools

Authors: Andriana Mkrtchyan, Vahe Khlghatyan

Abstract:

The choice of a profession is one of the most important decisions people make throughout their life. With the development of modern science, technologies, and all the spheres existing in the modern world, more and more professions are being arisen that complicate even more the process of choosing. Hence, there is a need for a guiding platform to help people to choose a profession and the right career path based on their interests, skills, and personality. This review aims at analyzing existing methods of comparing PDF format documents and suggests that a 3-stage approach is implemented for the comparison, that is – 1. text extraction from PDF format documents, 2. comparison of the extracted text via NLP algorithms, 3. comparison representation using special shape and color psychology methodology.

Keywords: color psychology, data acquisition/extraction, data augmentation, disambiguation, natural language processing, outlier detection, semantic similarity, text-mining, user evaluation, visual search

Procedia PDF Downloads 79
29918 Genome-Wide Mining of Potential Guide RNAs for Streptococcus pyogenes and Neisseria meningitides CRISPR-Cas Systems for Genome Engineering

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system can facilitate targeted genome editing in organisms. Dual or single guide RNA (gRNA) can program the Cas9 nuclease to cut target DNA in particular areas; thus, introducing concise mutations either via error-prone non-homologous end-joining repairing or via incorporating foreign DNAs by homologous recombination between donor DNA and target area. In spite of high demand of such promising technology, developing a well-organized procedure in order for reliable mining of potential target sites for gRNAs in large genomic data is still challenging. Hence, we aimed to perform high-throughput detection of target sites by specific PAMs for not only common Streptococcus pyogenes (SpCas9) but also for Neisseria meningitides (NmCas9) CRISPR-Cas systems. Previous research confirmed the successful application of such RNA-guided Cas9 orthologs for effective gene targeting and subsequently genome manipulation. However, Cas9 orthologs need their particular PAM sequence for DNA cleavage activity. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of the target site for the two orthogonals of Cas9 protein, we created a reliable procedure to explore possible gRNA sequences. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. Finally, a complete list of all potential gRNAs along with their locations, strands, and PAMs sequence orientation can be provided for both SpCas9 as well as another potential Cas9 ortholog (NmCas9). The artificial design of potential gRNAs in a genome of interest can accelerate functional genomic studies. Consequently, the application of such novel genome editing tool (CRISPR/Cas technology) will enhance by presenting increased versatility and efficiency.

Keywords: CRISPR/Cas9 genome editing, gRNA mining, SpCas9, NmCas9

Procedia PDF Downloads 263
29917 The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation

Authors: Yan Pang, Xiang Wang, Zhaomiao Liu

Abstract:

Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case.

Keywords: droplet generation, droplet size, flow flied, forced fluctuation

Procedia PDF Downloads 282
29916 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 531
29915 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 76
29914 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study

Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee

Abstract:

Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.

Keywords: bubble matrix analysis, LHDs, OEMs, Pareto chart analysis, spares consumption matrix, critical alarms checklist

Procedia PDF Downloads 154
29913 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications

Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin

Abstract:

This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.

Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack

Procedia PDF Downloads 83
29912 Socioterritorial Inequalities in a Region of Chile. Beyond the Geography

Authors: Javier Donoso-Bravo, Camila Cortés-Zambrano

Abstract:

In this paper, we analyze socioterritorial inequalities in the region of Valparaiso (Chile) using secondary data to account for these inequalities drawing on economic, social, educational, and environmental dimensions regarding the thirty-six municipalities of the region. We looked over a wide-ranging set of secondary data from public sources regarding economic activities, poverty, employment, income, years of education, post-secondary education access, green areas, access to potable water, and others. We found sharp socioterritorial inequalities especially based on the economic performance in each territory. Analysis show, on the one hand, the existence of a dual and unorganized development model in some territories with a strong economic activity -especially in the areas of finance, real estate, mining, and vineyards- but, at the same time, with poor social indicators. On the other hand, most of the territories show a dispersed model with very little dynamic economic activities and very poor social development. Finally, we discuss how socioterritorial inequalities in the region of Valparaiso reflect the level of globalization of the economic activities carried on in every territory.

Keywords: socioterritorial inequalities, development model, Chile, secondary data, Region of Valparaiso

Procedia PDF Downloads 103