Search results for: collaborative platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2780

Search results for: collaborative platform

1910 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective

Authors: Smita Singh

Abstract:

Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.

Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms

Procedia PDF Downloads 31
1909 Design of the Ubiquitous Cloud Learning Management System

Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema

Abstract:

This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system

Procedia PDF Downloads 523
1908 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality

Authors: Robert Jesiolowski, Monique Jesiolowski

Abstract:

Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.

Keywords: higher education, innovation, virtual reality, game-based learning, loci method

Procedia PDF Downloads 96
1907 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
1906 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 100
1905 Students’ Perceptions of Mobile Learning: Case Study of Kuwait

Authors: Rana AlHajri, Salah Al-Sharhan, Ahmed Al-Hunaiyyan

Abstract:

Mobile learning is a new learning landscape that offers opportunity for collaborative, personal, informal, and students’ centered learning environment. In implementing any learning system such as a mobile learning environment, learners’ expectations should be taken into consideration. However, there is a lack of studies on this aspect, particularly in the context of Kuwait higher education (HE) institutions. This study focused on how students perceive the use of mobile devices in learning. Although m-learning is considered as an effective educational tool in developed countries, it is not yet fully utilized in Kuwait. The study reports on the results of a survey conducted on 623 HE students in Kuwait to a better understand students' perceptions and opinions about the effectiveness of using mobile learning systems. An analysis of quantitative survey data is presented. The findings indicated that Kuwait HE students are very familiar with mobile devices and its applications. The results also reveal that students have positive perceptions of m-learning, and believe that video-based social media applications enhance the teaching and learning process.

Keywords: higher education, mobile learning, social media, students’ perceptions

Procedia PDF Downloads 370
1904 China Global Policy through the Shanghai Cooperation Organization

Authors: Enayatollah Yazdani

Abstract:

In the post-Cold War era, the world is facing a new emerging global order with the rise of multiple actors in the international arena. China, as a rising global power, has great leverage in internal relations. In particular, during the last two decades, China has rapidly transformed its economy into a global leader in advanced technologies. As a rising power and as one of the two major founding members of the Shanghai Cooperation Organization (SCO), China has tried to use this regional organization, which has the potential to become an important political and security organization of the major states located in the vast Eurasian landmass, for its “go global” strategy. In fact, for Beijing, the SCO represents a new and unique cooperation model, reflecting its vision of a multipolar world order. China has used the SCO umbrella as a multilateral platform to address external threats posed by non-state actors on its vulnerable western border; to gain a strong economic and political foothold in Central Asia without putting the Sino-Russian strategic partnership at risk; and to enhance its energy security through large-scale infrastructure investment in, and trade with, the Central Asian member states. In other words, the SCO is one of the successful outcomes of Chines foreign policy in the post-Cold War era. The expansion of multilateral ties all over the world by dint of pursuing institutional strategies as SCO identifies China as a more constructive power. SCO became a new model of cooperation that was formed on the remains of collapsed Soviet system and predetermined China's geopolitical role in the region. As the fast developing effective regional mechanism, SCO now has more of an external impact on the international system and forms a new type of interaction for promoting China's grand strategy of 'peaceful rise.' This paper aims to answer this major question: How the Chinese government has manipulated the SCO for its foreign policy and global and regional influence? To answer this question, the main discussion is that with regard to the SCO capabilities and politico-economic potential, this organization has been used by China as a platform to expand influence beyond its borders.

Keywords: China, the Shanghai Cooperation Organization (SCO), Central Asia, global policy, foreign policy

Procedia PDF Downloads 65
1903 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening

Authors: Partha Saha, Uttam Kumar Banerjee

Abstract:

Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.

Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries

Procedia PDF Downloads 259
1902 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 309
1901 Towards Development of a Framework for Saudi Education Software Ecosystem

Authors: Fazal-e-Amin, Abdullah S. Alghamdi, Iftikhar Ahmad

Abstract:

Software ecosystems’ concept is an inspiration from the natural ecosystem. Software ecosystems refer to large systems developed on top of a platform composed of different components developed by different entities of that ecosystem. Ecosystems improve information access, dissemination and coordination considerably. The ability to evolve and accommodate new subsystems gives a boost to the software ecosystems. In this paper, Saudi education software ecosystem is discussed and its need and potential benefits are highlighted. This work will provide a basis for further research in this area and foundation in development of Saudi education ecosystem.

Keywords: software ecosystem, education software, framework, software engineering

Procedia PDF Downloads 533
1900 The Roles of Education, Policies and Technologies in the Globalization Processes of Creative Industry

Authors: Eureeka Haishang Wu

Abstract:

Creative Industry has been recognized as top priority in many nations for decades, as through globalization processes, culture can be economized by creative industry to develop economies. From non-economic perspectives; creative industry supports nation-identity, enhances global exposure, and improve international relation. In order to enable the globalization processes of creative industry, a three-step approach was proposed to align education, policies, and technologies into a transformation platform, and eventually to achieve a common model of global collaboration.

Keywords: creative industry, education, policies, technologies, collaboration, globalization

Procedia PDF Downloads 344
1899 A Novel Antenna Design for Telemedicine Applications

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.

Keywords: BFO, electrical permittivity, fractals, Koch curve

Procedia PDF Downloads 508
1898 The Role of Online Platforms in Economic Growth and the Introduction of Local Culture in Tourist Areas

Authors: Maryam Nzari

Abstract:

Today, with the advancement of Internet technology, one of the tools used by humans is a tool that allows them to do what they need easily. Online platforms in different forms and by providing different services make it possible for users to communicate with each other and users with platforms. Audience communication with mass media is not the same as in the past. Today the conditions are different; With online platforms that provide the latest news minute by minute, he has access to all the content and can choose more quickly and easily. According to professionals Galloway, Apple, Amazon, Facebook and Google companies create a wide range. They are among the products and services that are connected with the daily life of billions of people all over the planet. Over time, platforms gain high economic value and in this way gain power that will influence the social, cultural, economic and political aspects of people’s lives. As a result of the effects of the process of platformization on all areas of individual and collective life, we now live in a platform society, which communicates It is close to “platform politics”. Nowadays, with social media platforms, users can interact with many people and people can share their data on various topics with others in this space. In this research, what will be investigated is the role of these online platforms in economic growth and the introduction of local culture areas in tourist areas. Tourism in a region is linked with various factors; One of the important factors that attract tourists to a region is its culture, and on the other hand, this culture can also affect economic growth. Without a proper understanding of the culture of these tourist areas, it is not possible to plan properly for the growth of the tourism industry and the subsequent increase in economic growth. The interaction of local people and tourists will have social and cultural effects on each other and will give them the opportunity to get to know each other. Therefore, the purpose of this research is to examine issues such as the role that online platforms play in cultural interaction in tourist areas and to understand that online platforms are only seeking to show the good aspects of a region and then generate enough extra income or that platforms can They play a role beyond what we imagine and introduce the culture of a region in a proper way so that we don’t see disagreements in the tourism planning of that region. in this article It has been tried by using library and field methods Answer the questions.

Keywords: online platforms, economic growth, culture Indigenous, tourism

Procedia PDF Downloads 59
1897 Examining Geometric Thinking Behaviours of Undergraduates in Online Geometry Course

Authors: Peter Akayuure

Abstract:

Geometry is considered an important strand in mathematics due to its wide-ranging utilitarian value and because it serves as a building block for understanding other aspects of undergraduate mathematics, including algebra and calculus. Matters regarding students’ geometric thinking have therefore long been pursued by mathematics researchers and educators globally via different theoretical lenses, curriculum reform efforts, and innovative instructional practices. However, so far, studies remain inconclusive about the instructional platforms that effectively promote geometric thinking. At the University of Education, Winneba, an undergraduate geometry course was designed and delivered on UEW Learning Management System (LMS) using Moodle platform. This study utilizes van Hiele’s theoretical lens to examine the entry and exit’s geometric thinking behaviours of prospective teachers who took the undergraduate geometry course in the LMS platform. The study was a descriptive survey that involved an intact class of 280 first-year students enrolled to pursue a bachelor's in mathematics education at the university. The van Hiele’s Geometric thinking test was used to assess participants’ entry and exit behaviours, while semi-structured interviews were used to obtain data for triangulation. Data were analysed descriptively and displayed in tables and charts. An Independent t-test was used to test for significant differences in geometric thinking behaviours between those who entered the university with a diploma certificate and with senior high certificate. The results show that on entry, more than 70% of the prospective teachers operated within the visualization level of van Hiele’s geometric thinking. Less than 20% reached analysis and abstraction levels, and no participant reached deduction and rigor levels. On exit, participants’ geometric thinking levels increased markedly across levels, but the difference from entry was not significant and might have occurred by chance. The geometric thinking behaviours of those enrolled with diploma certificates did not differ significant from those enrolled directly from senior high school. The study recommends that the design principles and delivery of undergraduate geometry course via LMS should be structured and tackled using van Hiele’s geometric thinking levels to serve as means of bridging the existing learning gaps of undergraduate students.

Keywords: geometric thinking, van Hiele’s, UEW learning management system, undergraduate geometry

Procedia PDF Downloads 130
1896 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration

Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang

Abstract:

To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.

Keywords: medical decision, medical ontologies, ontologies integration, linked data, knowledge engineering, e-health system

Procedia PDF Downloads 200
1895 The Cooperative Learning Management in the Course of Principles of Mathematics for Graduate Level

Authors: Komon Paisal

Abstract:

The aim of this research was to create collaborative learning activities in the course of Principles of Mathematics for graduate level by investigating the students’ ability in proving the mathematics principles as well as their attitudes towards the activities. The samples composed of 2 main group; lecturers and students. The lecturers consisted of 3 teachers who taught the course of Principles of Mathematics at Rajabhat Suan Sunandha Unicersity in the academic year 2012. The students consisted of 32 students joining the cooperative learning activities in the subject of Principles of Mathematics in the academic year 2012. The research tools included activity plan for cooperative learning, testing on mathematics with the reliability of 0.8067 and the attitude questionnaires reported by the students. The results showed that: 1) the efficiency of the developed cooperative learning activities was 69.76/ 68.57 which was lower than the set criteria at 70/70. 2) The students joining the cooperative learning activities were able to prove the principles of mathematics at the average of 70%. 3) The students joining the cooperative learning activities reported moderate attitude towards the activities.

Keywords: instructional design, pedagogical, teaching strategies, learning strategies

Procedia PDF Downloads 272
1894 Creating a Critical Digital Pedagogy Context: Challenges and Potential of Designing and Implementing a Blended Learning Intervention for Adult Refugees in Greece

Authors: Roula Kitsiou, Sofia Tsioli, Eleni Gana

Abstract:

The current sociopolitical realities (displacement, encampment, and resettlement) refugees experience in Greece are a quite complex issue. Their educational and social ‘integration’ is characterized by transition, insecurity, and constantly changing needs. Based on the current research data, technology and more specifically mobile phones are one of the most important resources for refugees, regardless of their levels of conventional literacy. The proposed paper discusses the challenges encountered during the design and implementation of the educational Action 16 ‘Language Education for Adult Refugees’. Action 16 is one of the 24 Actions of the Project PRESS (Provision of Refugee Education and Support Scheme), funded by the Hellenic Open University (2016-2017). Project PRESS had two main objectives: a) to address the educational and integration needs of refugees in transit, who currently reside in Greece, and b) implement research-based educational interventions in online and offline sites. In the present paper, the focus is on reflection and discussion about the challenges and the potential of integrating technology in language learning for a target-group with many specific needs, which have been recorded in field notes among other research tools (ethnographic data) used in the context of PRESS. Action 16, explores if and how technology enhanced language activities in real-time and place mediated through teachers, as well as an autonomous computer-mediated learning space (moodle platform and application) builds on and expands the linguistic, cultural and digital resources and repertoires of the students by creating collaborative face-to-face and digital learning spaces. A broader view on language as a dynamic puzzle of semiotic resources and processes based on the concept of translanguaging is adopted. Specifically, designing the blended learning environment we draw on the construct of translanguaging a) as a symbolic means to valorize students’ repertoires and practices, b) as a method to reach to specific applications of a target-language that the context brings forward (Greek useful to them), and c) as a means to expand refugees’ repertoires. This has led to the creation of a learning space where students' linguistic and cultural resources can find paths to expression. In this context, communication and learning are realized by mutually investing multiple aspects of the team members' identities as educational material designers, teachers, and students on the teaching and learning processes. Therefore, creativity, humour, code-switching, translation, transference etc. are all possible means that can be employed in order to promote multilingual communication and language learning towards raising intercultural awareness in a critical digital pedagogy context. The qualitative analysis includes critical reflection on the developed educational material, team-based reflexive discussions, teachers’ reports data, and photographs from the interventions. The endeavor to involve women and men with a refugee background into a blended learning experience was quite innovative especially for the Greek context. It reflects a pragmatist ethos of the choices made in order to respond to the here-and-now needs of the refugees, and finally it was a very challenging task that has led all actors involved into Action 16 to (re)negotiations of subjectivities and products in a creative and hopeful way.

Keywords: blended learning, integration, language education, refugees

Procedia PDF Downloads 128
1893 Data, Digital Identity and Antitrust Law: An Exploratory Study of Facebook’s Novi Digital Wallet

Authors: Wanjiku Karanja

Abstract:

Facebook has monopoly power in the social networking market. It has grown and entrenched its monopoly power through the capture of its users’ data value chains. However, antitrust law’s consumer welfare roots have prevented it from effectively addressing the role of data capture in Facebook’s market dominance. These regulatory blind spots are augmented in Facebook’s proposed Diem cryptocurrency project and its Novi Digital wallet. Novi, which is Diem’s digital identity component, shall enable Facebook to collect an unprecedented volume of consumer data. Consequently, Novi has seismic implications on internet identity as the network effects of Facebook’s large user base could establish it as the de facto internet identity layer. Moreover, the large tracts of data Facebook shall collect through Novi shall further entrench Facebook's market power. As such, the attendant lock-in effects of this project shall be very difficult to reverse. Urgent regulatory action is therefore required to prevent this expansion of Facebook’s data resources and monopoly power. This research thus highlights the importance of data capture to competition and market health in the social networking industry. It utilizes interviews with key experts to empirically interrogate the impact of Facebook’s data capture and control of its users’ data value chains on its market power. This inquiry is contextualized against Novi’s expansive effect on Facebook’s data value chains. It thus addresses the novel antitrust issues arising at the nexus of Facebook’s monopoly power and the privacy of its users’ data. It also explores the impact of platform design principles, specifically data portability and data portability, in mitigating Facebook’s anti-competitive practices. As such, this study finds that Facebook is a powerful monopoly that dominates the social media industry to the detriment of potential competitors. Facebook derives its power from its size, annexure of the consumer data value chain, and control of its users’ social graphs. Additionally, the platform design principles of data interoperability and data portability are not a panacea to restoring competition in the social networking market. Their success depends on the establishment of robust technical standards and regulatory frameworks.

Keywords: antitrust law, data protection law, data portability, data interoperability, digital identity, Facebook

Procedia PDF Downloads 123
1892 Modeling and Analyzing Controversy in Large-Scale Cyber-Argumentation

Authors: Najla Althuniyan

Abstract:

Online discussions take place across different platforms. These discussions have the potential to extract crowd wisdom and capture the collective intelligence from a different perspective. However, certain phenomena, such as controversy, often appear in online argumentation that makes the discussion between participants heated. Heated discussions can be used to extract new knowledge. Therefore, detecting the presence of controversy is an essential task to determine if collective intelligence can be extracted from online discussions. This paper uses existing measures for estimating controversy quantitatively in cyber-argumentation. First, it defines controversy in different fields, and then it identifies the attributes of controversy in online discussions. The distributions of user opinions and the distance between opinions are used to calculate the controversial degree of a discussion. Finally, the results from each controversy measure are discussed and analyzed using an empirical study generated by a cyber-argumentation tool. This is an improvement over the existing measurements because it does not require ground-truth data or specific settings and can be adapted to distribution-based or distance-based opinions.

Keywords: online argumentation, controversy, collective intelligence, agreement analysis, collaborative decision-making, fuzzy logic

Procedia PDF Downloads 117
1891 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth

Authors: Caroline Atef Shoukry Tadros

Abstract:

Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.

Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science

Procedia PDF Downloads 74
1890 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 35
1889 Participatory Monitoring Strategy to Address Stakeholder Engagement Impact in Co-creation of NBS Related Project: The OPERANDUM Case

Authors: Teresa Carlone, Matteo Mannocchi

Abstract:

In the last decade, a growing number of International Organizations are pushing toward green solutions for adaptation to climate change. This is particularly true in the field of Disaster Risk Reduction (DRR) and land planning, where Nature-Based Solutions (NBS) had been sponsored through funding programs and planning tools. Stakeholder engagement and co-creation of NBS is growing as a practice and research field in environmental projects, fostering the consolidation of a multidisciplinary socio-ecological approach in addressing hydro-meteorological risk. Even thou research and financial interests are constantly spread, the NBS mainstreaming process is still at an early stage as innovative concepts and practices make it difficult to be fully accepted and adopted by a multitude of different actors to produce wide scale societal change. The monitoring and impact evaluation of stakeholders’ participation in these processes represent a crucial aspect and should be seen as a continuous and integral element of the co-creation approach. However, setting up a fit for purpose-monitoring strategy for different contexts is not an easy task, and multiple challenges emerge. In this scenario, the Horizon 2020 OPERANDUM project, designed to address the major hydro-meteorological risks that negatively affect European rural and natural territories through the co-design, co-deployment, and assessment of Nature-based Solution, represents a valid case study to test a monitoring strategy from which set a broader, general and scalable monitoring framework. Applying a participative monitoring methodology, based on selected indicators list that combines quantitative and qualitative data developed within the activity of the project, the paper proposes an experimental in-depth analysis of the stakeholder engagement impact in the co-creation process of NBS. The main focus will be to spot and analyze which factors increase knowledge, social acceptance, and mainstreaming of NBS, promoting also a base-experience guideline to could be integrated with the stakeholder engagement strategy in current and future similar strongly collaborative approach-based environmental projects, such as OPERANDUM. Measurement will be carried out through survey submitted at a different timescale to the same sample (stakeholder: policy makers, business, researchers, interest groups). Changes will be recorded and analyzed through focus groups in order to highlight causal explanation and to assess the proposed list of indicators to steer the conduction of similar activities in other projects and/or contexts. The idea of the paper is to contribute to the construction of a more structured and shared corpus of indicators that can support the evaluation of the activities of involvement and participation of various levels of stakeholders in the co-production, planning, and implementation of NBS to address climate change challenges.

Keywords: co-creation and collaborative planning, monitoring, nature-based solution, participation & inclusion, stakeholder engagement

Procedia PDF Downloads 115
1888 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors

Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl

Abstract:

An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.

Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids

Procedia PDF Downloads 130
1887 Cognitive Behavior Therapy with a Migrant Pakistani in Malaysia: A Single Case Study of Conversion Disorder

Authors: Fahad R. Choudhry., Khadeeja Munawar

Abstract:

This clinical case presents a 24 years old, Muslim Pakistani girl with a history of conversion disorder. Her symptoms comprised fits, restlessness, numbness in legs, poor coordination and balance, burning during urination and retention. A cognitive-behavioral model was used for conceptualizing her problem and devising a management plan based on cognitive behavioral therapy (CBT) and culturally adapted coping statements. She took 13 therapy sessions and was presented with idiosyncratic case conceptualization. Psychoeducation, coping statements, extinction, verbal challenging, and behavioral activation techniques were practiced in a collaborative way for cognitive restructuring of the client. Focus of terminal sessions was on anger management. The client needed a couple of more sessions in order to help her manage her anger. However, the therapy was terminated on the part of the client after attainment of short term goals. The client reported to have a 75 % improvement in her overall condition and remained compliant throughout the therapy.

Keywords: cognitive behavioral therapy, conversion disorder, female, Muslim, Pakistani

Procedia PDF Downloads 195
1886 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World

Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor

Abstract:

In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.

Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities

Procedia PDF Downloads 26
1885 Water Monitoring Sentinel Cloud Platform: Water Monitoring Platform Based on Satellite Imagery and Modeling Data

Authors: Alberto Azevedo, Ricardo Martins, André B. Fortunato, Anabela Oliveira

Abstract:

Water is under severe threat today because of the rising population, increased agricultural and industrial needs, and the intensifying effects of climate change. Due to sea-level rise, erosion, and demographic pressure, the coastal regions are of significant concern to the scientific community. The Water Monitoring Sentinel Cloud platform (WORSICA) service is focused on providing new tools for monitoring water in coastal and inland areas, taking advantage of remote sensing, in situ and tidal modeling data. WORSICA is a service that can be used to determine the coastline, coastal inundation areas, and the limits of inland water bodies using remote sensing (satellite and Unmanned Aerial Vehicles - UAVs) and in situ data (from field surveys). It applies to various purposes, from determining flooded areas (from rainfall, storms, hurricanes, or tsunamis) to detecting large water leaks in major water distribution networks. This service was built on components developed in national and European projects, integrated to provide a one-stop-shop service for remote sensing information, integrating data from the Copernicus satellite and drone/unmanned aerial vehicles, validated by existing online in-situ data. Since WORSICA is operational using the European Open Science Cloud (EOSC) computational infrastructures, the service can be accessed via a web browser and is freely available to all European public research groups without additional costs. In addition, the private sector will be able to use the service, but some usage costs may be applied, depending on the type of computational resources needed by each application/user. Although the service has three main sub-services i) coastline detection; ii) inland water detection; iii) water leak detection in irrigation networks, in the present study, an application of the service to Óbidos lagoon in Portugal is shown, where the user can monitor the evolution of the lagoon inlet and estimate the topography of the intertidal areas without any additional costs. The service has several distinct methodologies implemented based on the computations of the water indexes (e.g., NDWI, MNDWI, AWEI, and AWEIsh) retrieved from the satellite image processing. In conjunction with the tidal data obtained from the FES model, the system can estimate a coastline with the corresponding level or even topography of the inter-tidal areas based on the Flood2Topo methodology. The outcomes of the WORSICA service can be helpful for several intervention areas such as i) emergency by providing fast access to inundated areas to support emergency rescue operations; ii) support of management decisions on hydraulic infrastructures operation to minimize damage downstream; iii) climate change mitigation by minimizing water losses and reduce water mains operation costs; iv) early detection of water leakages in difficult-to-access water irrigation networks, promoting their fast repair.

Keywords: remote sensing, coastline detection, water detection, satellite data, sentinel, Copernicus, EOSC

Procedia PDF Downloads 128
1884 Reshoring Strategies for Enhanced Supply Chain Resilience: A Comprehensive Analysis of Procurement Challenges and Solutions in the United States

Authors: Emilia Segun-Ajao

Abstract:

The strategy of relocation aimed at strengthening supply chain resilience in the United States is examined, taking into account recent global disturbances and vulnerabilities in offshore manufacturing. It explains the procurement challenges faced by enterprises and offers solutions to mitigate risks and improve resilience. Through the analysis of innovative approaches, including technological advances, policy considerations, and strategic frameworks, this study provides insights to decision-makers about the complexity of supply chain management. Reshoring has gained attention as a strategy to improve supply chain resilience in the face of global disruptions. This analysis focuses on the importance of relocating as a multifaceted approach to strengthening supply chains, advocating economic benefits, technological advances, and policy frameworks to create a more robust supply landscape in the United States.

Keywords: collaborative partnerships, supply chain resilience, procurement challenges, technology adoption

Procedia PDF Downloads 63
1883 Quantitative Seismic Interpretation in the LP3D Concession, Central of the Sirte Basin, Libya

Authors: Tawfig Alghbaili

Abstract:

LP3D Field is located near the center of the Sirt Basin in the Marada Trough approximately 215 km south Marsa Al Braga City. The Marada Trough is bounded on the west by a major fault, which forms the edge of the Beda Platform, while on the east, a bounding fault marks the edge of the Zelten Platform. The main reservoir in the LP3D Field is Upper Paleocene Beda Formation. The Beda Formation is mainly limestone interbedded with shale. The reservoir average thickness is 117.5 feet. To develop a better understanding of the characterization and distribution of the Beda reservoir, quantitative seismic data interpretation has been done, and also, well logs data were analyzed. Six reflectors corresponding to the tops of the Beda, Hagfa Shale, Gir, Kheir Shale, Khalifa Shale, and Zelten Formations were picked and mapped. Special work was done on fault interpretation part because of the complexities of the faults at the structure area. Different attribute analyses were done to build up more understanding of structures lateral extension and to view a clear image of the fault blocks. Time to depth conversion was computed using velocity modeling generated from check shot and sonic data. The simplified stratigraphic cross-section was drawn through the wells A1, A2, A3, and A4-LP3D. The distribution and the thickness variations of the Beda reservoir along the study area had been demonstrating. Petrophysical analysis of wireline logging also was done and Cross plots of some petrophysical parameters are generated to evaluate the lithology of reservoir interval. Structure and Stratigraphic Framework was designed and run to generate different model like faults, facies, and petrophysical models and calculate the reservoir volumetric. This study concluded that the depth structure map of the Beda formation shows the main structure in the area of study, which is north to south faulted anticline. Based on the Beda reservoir models, volumetric for the base case has been calculated and it has STOIIP of 41MMSTB and Recoverable oil of 10MMSTB. Seismic attributes confirm the structure trend and build a better understanding of the fault system in the area.

Keywords: LP3D Field, Beda Formation, reservoir models, Seismic attributes

Procedia PDF Downloads 217
1882 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 386
1881 The Regulation of Reputational Information in the Sharing Economy

Authors: Emre Bayamlıoğlu

Abstract:

This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.

Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy

Procedia PDF Downloads 467