Search results for: self-flux grown synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3036

Search results for: self-flux grown synthesis

2976 Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract

Authors: Yameen Ahmed, Jamshid Hussain, Farman Ullah, Sohaib Asif

Abstract:

The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles.

Keywords: cobalt oxide, copper oxide, green synthesis, nanoparticles

Procedia PDF Downloads 183
2975 Effects of Deficit Watering and Potassium Fertigation on Growth and Yield Response of Cassava

Authors: Daniel O. Wasonga, Jouko Kleemola, Laura Alakukku, Pirjo Makela

Abstract:

Cassava (Manihot esculenta Crantz) is a major food crop for millions of people in the tropics. Growth and yield of cassava in the arid-tropics are seriously constrained by intermittent water deficit and low soil K content. Therefore, experiments were conducted to investigate the effects of interaction between water deficit and K fertigation on growth and yield response of biofortified cassava at early growth phase. Yellow cassava cultivar was grown under controlled glasshouse conditions in 5-L pots containing 1.7 kg of pre-fertilized potting mix. Plants were watered daily for 30 days after planting. Treatments were three watering levels (30%, severe water deficit; 60%, mild water deficit; 100%, well-watered), on which K (0.01, 1, 4, 16 and 32 mM) was split. Plants were harvested at 90 days after planting. Leaf area was smallest in plants grown with 30% watering and 0.01 mM K, and largest in plants grown with 100% watering and 32 mM K. Leaf, root, and total dry mass decreased in water-stressed plants. However, dry mass was markedly higher when plants were grown with 16 mM K under all watering levels in comparison to other K concentrations. The highest leaf, root and total dry mass were in plants with 100% watering and 16 mM K. In conclusion, K improved the growth of plants under water deficit and thus, K application on soils with low moisture and low K may improve the productivity of cassava.

Keywords: dry mass, interaction, leaf area, Manihot esculenta

Procedia PDF Downloads 93
2974 Green Synthesis of Silver Nanoparticles from Citrus aurantium Aqueous Pollen Extract and Their Antibacterial Activity

Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi

Abstract:

Pollen extract of in vitro plants raised of Citrus aurantium as reducer and stabilizer was assessed for the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNPs was performed at room temperature assisting in solutions by reduction takes place rapidly for 10 min. Surface plasmon resonance (SPR) peaks in UV–Vis spectra indicated the formation of polydispersive AgNPs. Silver ions concentration, pH, temperature and reaction time were optimized in the synthesis of AgNPs. The nanoparticles obtained were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. The synthesized AgNPs were mostly spherical in shape with an average size of 15 nm. XRD study shows that the AgNPs are crystalline in nature with face-centered cubic (fcc) geometry. It shows the significant antibacterial efficacy against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by disk diffusion method using Mueller-Hinton Agar.

Keywords: green synthesis, Citrus aurantium, silver nanoparticles, antibacterial activity

Procedia PDF Downloads 267
2973 Oxalate Content of Raw and Cooked Amaranth and Strawberry Spinach Grown in an Elevated CO₂ Atmosphere

Authors: Madhuri Kanala, Geoffrey Savage

Abstract:

Worldwide CO₂ levels are slowly rising, and this may have effects on the growth and nutritional composition of many food plants. The production of secondary metabolites such as oxalates has not been investigated in depth. The oxalate content of many food plants are known to have adverse nutritional effects on humans and reduction in the oxalate contents of food plants is a very positive move. Recent studies had shown that the oxalate content of the leaves of spinach and silver beet reduced when the plants were grown in an environment where CO₂ was increased. The response of amaranth and strawberry spinach leaves to changes in the high CO₂ environment have not been understood though it is known that the plants do contain appreciable oxalate contents. A study was conducted where amaranth and strawberry spinach plants were grown in identical plant growth chambers with the same environmental conditions except that one chamber was supplied with ambient air (CO₂ 405 ppm) while the other chamber had the CO₂ level increased to 650 ppm. The total and soluble oxalate content of the leaves of raw and cooked amaranth and strawberry spinach were determined by HPLC and calcium levels were determined using ICP following 6 weeks of growth. The total oxalate content of the fresh leaves of amaranth and strawberry spinach were reduced by 29.5 % and 24.6% respectively in the leaves of the plants grown in increased CO₂ conditions compared to ambient levels. The soluble oxalate content of amaranth leaves grown under ambient and increased CO₂ conditions were future reduced by 42% and 26.8% respectively following cooking as the soluble oxalate was leached into the cooking water and discarded. The reduction of the oxalate and calcium levels of raw and cooked amaranth and strawberry spinach leaves following an increase in CO₂ content in the air is an interesting positive response to an otherwise significant environmental problem.

Keywords: amaranth, calcium oxalate, enriched CO₂, oxalates, strawberry spinach

Procedia PDF Downloads 169
2972 The Green Synthesis AgNPs from Basil Leaf Extract

Authors: Wanida Wonsawat

Abstract:

Bioreduction of silver nanoparticles (AgNPs) from silver ions (Ag+) using water extract of Thai basil leaf was successfully carried out. The basil leaf extract provided a reducing agent and stabilizing agent for a synthesis of metal nanoparticles. Silver nanoparticles received from cut and uncut basil leaf was compared. The resulting silver nanoparticles are characterized by UV-Vis spectroscopy. The maximum intensities of silver nanoparticle from cut and uncut basil leaf were 410 and 420, respectively. The techniques involved are simple, eco-friendly and rapid.

Keywords: basil leaves, silver nanoparticles, green synthesis, plant extract

Procedia PDF Downloads 554
2971 Novel Synthesis of Metal Oxide Nanoparticles from Type IV Deep Eutectic Solvents

Authors: Lorenzo Gontrani, Marilena Carbone, Domenica Tommasa Donia, Elvira Maria Bauer, Pietro Tagliatesta

Abstract:

One of the fields where DES shows remarkable added values is the synthesis Of inorganic materials, in particular nanoparticles. In this field, the higher- ent and highly-tunable nano-homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare Nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed, and some ex-citing examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like shapes. The use of the pre- pared nanoparticles as fluorescent materials for the detection of various contaminants is under development.

Keywords: metal deep eutectic solvents, nanoparticles, inorganic synthesis, type IV DES, lamellar

Procedia PDF Downloads 104
2970 Investigation on Fischer-Tropsch Synthesis over Cobalt-Gadolinium Catalyst

Authors: Jian Huang, Weixin Qian, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt-gadolinium catalyst for Fischer-Tropsch synthesis was prepared by impregnation method with commercial silica gel, and its texture properties were characterized by BET, XRD, and TPR. The catalytic performance of the catalyst was tested in a fixed bed reactor. The results showed that the addition of gadolinium to the cobalt catalyst might decrease the size of cobalt particles, and increased the dispersion of catalytic active cobalt phases. The carbon number distributions for the catalysts was calculated by ASF equation.

Keywords: Fischer-Tropsch synthesis, cobalt-based catalysts, gadolinium, carbon number distributions

Procedia PDF Downloads 353
2969 Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads.

Keywords: fatigue crack propagation life, magnesium alloys, maximum fatigue load, probability

Procedia PDF Downloads 362
2968 Hydrothermal Synthesis of Hydrosodalite by Using Ultrasounds

Authors: B. Białecka, Z. Adamczyk, M. Cempa

Abstract:

The use of ultrasounds in zeolization of fly ash can increase the efficiency of this process. The molar ratios of the reagents, as well as the time and temperature of the synthesis, are the main parameters determining the type and properties of the zeolite formed. The aim of the work was to create hydrosodalite in a short time (8h), with low NaOH concentration (3 M) and in low temperature (80°C). A zeolite material contained in fly ash from hard coal combustion in one of Polish Power Plant was subjected to hydrothermal alkaline synthesis. The phase composition of the ash consisted mainly of glass, mullite, quartz, and hematite. The dominant chemical components of the ash were SiO₂ (over 50%mas.) and Al₂O₃ (more than 28%mas.), whereas the contents of the remaining components, except Fe₂O₃ (6.34%mas.), did not exceed 4% mas. The hydrothermal synthesis of the zeolite material was carried out in the following conditions: 3M-solution of NaOH, synthesis time – 8 hours, 40 kHz-frequency ultrasounds during the first two hours of synthesis. The mineral components of the input ash as well as product after synthesis were identified in microscopic observations, in transmitted light, using X-ray diffraction (XRD) and electron scanning microscopy (SEM/EDS). The chemical composition of the input ash was identified by the method of X-ray fluorescence (XRF). The obtained material apart from phases found in the initial fly ash sample, also contained new phases, i.e., hydrosodalite and NaP-type zeolite. The chemical composition in micro areas of grains indicated their diversity: i) SiO₂ content was in the range 30-59%mas., ii) Al₂O₃ content was in the range 24-35%mas., iii) Na₂O content was in the range 6-15%mas. This clearly indicates that hydrosodalite forms hypertrophies with NaP type zeolite as well as relict grains of fly ash. A small amount of potassium in the examined grains is noteworthy, which may indicate the substitution of sodium with potassium. This is confirmed by the high value of the correlation coefficient between these two components.

Keywords: fly ash, hydrosodalite, ultrasounds, zeolite

Procedia PDF Downloads 130
2967 Synthesis, Characterization and Applications of Hydrogels Based on Chitosan Derivatives

Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa

Abstract:

Firstly, synthesis of N-Quaternized Chitosan (NQC), then it was proven by FTIR and 1H-NMR analysis. The degree of quaternization(DQ 35% ) was determined by equation. Secondly, synthesis of cross-linked hydrogels composed of NQC and poly (vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde (GA) as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, SEM, XRD,and TGA. Swellability in simulated body fluid (SBF) solutions applied on NQC / PVA hydrogels and swelling rate(Wt%) and metal ions uptake was done on it.

Keywords: hydrogel, metal ions uptake, N-quaternized chitosan, poly (vinyl alcohol), swellability

Procedia PDF Downloads 405
2966 Ascorbic Acid Application Mitigates the Salt Stress Effects on Helianthus annuus L. Plants Grown on a Reclaimed Saline Soil

Authors: Mostafa M. Rady, Majed M. Howladar, Saad M. Howladar

Abstract:

A field trial was conducted during two successive seasons (2013 and 2014) in Southeast Fayoum, Egypt (29º 17'N; 30º 53'E) to investigate the improving effect of ascorbic acid (Vit C) foliar spray at the rates of 0, 1, 2 or 3 mM on the growth, seed and oil yields, and some chemical constituents of sunflower plants grown on a reclaimed saline soil (EC = 7.98–7.83). Vit C application at all rates (1, 2 and 3 mM) was significantly increased growth traits, seed and oil yields, and the concentrations of endogenous Vit C, leaf photosynthetic pigments, total soluble sugars, free proline and nutrient elements as well as K/Na ratio. In contrast, Na concentration was significantly reduced with the application of all Vit C levels. Vit C foliar spray at the rate of 2 mM was found to be the best treatment, alleviating the inhibitory effects of salinity on sunflower plants grown on a reclaimed saline soil.

Keywords: Helianthus annuus L., Vit C, salinity, growth, seed and oil yields, osmoprotectants

Procedia PDF Downloads 397
2965 Synthesis of Silver Nanoparticles by Different Types of Plants

Authors: Khamael Abualnaja, Hala M. Abo-Dief

Abstract:

Silver nanoparticles (AgNPs) are the subject of important recent interest, present in a large range of applications such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, we describe an effective and environmental-friendly technique of green synthesis of silver nanoparticles. Silver nanoparticles (AgNPs) synthesized using silver nitrate solution and the extract of mint, basil, orange peel and Tangerines peel which used as reducing agents. Silver Nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis absorption spectroscopy. SEM analysis showed the average particle size of mint, basil, orange peel, Tangerines peel are 30, 20, 12, 10 nm respectively. This is for the first time that any plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, scanning electron microscopy, plants

Procedia PDF Downloads 231
2964 Synthesis and Characterization of Chromenoformimidate

Authors: Houcine Ammar

Abstract:

Chromenederivatives are an important class of heterocycles that are found in a wide range of natural products. Chromenes are commonly used as cosmetics, food additives, and possibly biodegradable agrochemicals. Recently, the synthesis of chromene derivatives has drawn more attention due to their pharmacological and biological applications. In the present work, we are interested in the synthesis and characterization of chromeno [2,3-b] pyridin-4-yl) formimidate, carried out in 4 steps: (i) the synthesis of 3-cyanoiminocoumarins is realized first by Knœvenagel reaction by reacting malonitrile with variously substituted o-phenolic benzaldehydes. In order to undergo reduction by sodium tetraborohydride NaBH4 to lead to new 2-amino-3-cyano-4H-chromenes, these compounds were easily transformed by the action of malonitrile leading to 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile under microwave activation. For the final step, the action of triethylorthoformate on 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile leads to new chromeno [2,3-b] pyridinheterocycles. -4-yl) formimidate. The synthesized compounds have been characterized by different spectroscopic techniques 1 H-NMR, 13 C-NMR, and IRTF.

Keywords: chromene, microwave, knovenagel condensation, chromeno [2, 3-b] pyridine

Procedia PDF Downloads 69
2963 T3P® -DMSO Mediated One-Pot Tandem Approach for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones from Alcohols

Authors: Vinaya Kambappa

Abstract:

Propylphosphonic anhydride (T3P®)-DMSO is used as an efficient and mild reagent for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones from aromatic alcohols. Alcohols are oxidized in situ to aldehydes under mild conditions, which in turn undergo a three-component reaction with β-ketoester and urea/thiourea to afford 3,4-dihydropyrimidin-2(1H)-ones/thiones. The synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones directly from alcohols has been reported for the first time best to our knowledge, under mild reaction conditions in good yield. The easy work-up procedure, low cost and less toxicity of the reagent are the main advantages of this protocol.

Keywords: β-ketoester, propylphosphonic anhydride, three-component reaction, pyrimidine

Procedia PDF Downloads 127
2962 A Methodology for the Synthesis of Multi-Processors

Authors: Hamid Yasinian

Abstract:

Random epistemologies and hash tables have garnered minimal interest from both security experts and experts in the last several years. In fact, few information theorists would disagree with the evaluation of expert systems. In our research, we discover how flip-flop gates can be applied to the study of superpages. Though such a hypothesis at first glance seems perverse, it is derived from known results.

Keywords: synthesis, multi-processors, interactive model, moor’s law

Procedia PDF Downloads 408
2961 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis

Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz

Abstract:

During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.

Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs

Procedia PDF Downloads 178
2960 Attempts for the Synthesis of Indol-Ring Fluorinated Tryptophan Derivatives to Enhance the Activity of Antimicrobial Peptides

Authors: Anita K. Kovacs, Peter Hegyes, Zsolt Bozso, Gabor Toth

Abstract:

Fluorination has been used extensively by the pharmaceutical industry as a strategy to improve the pharmacokinetics of drugs due to its effectiveness in increasing the potency of antimicrobial peptides (AMPs). Multiple-fluorinated indole-ring-containing tryptophan derivatives have the potential of having better antimicrobial activity than the widely used mono-fluorinated indole-ring containing tryptophan derivatives, but they are not available commercially. Therefore, our goal is to synthesize multiple-fluorinated indole-ring containing tryptophan derivatives to incorporate them into AMPs to enhance their antimicrobial activity. During our work, we are trying several methods (classical organic synthesis, enzymic synthesis, and solid phase peptide synthesis) for the synthesis of the said compounds, with mixed results. With classical organic synthesis (four different routes), we did not get the desired results. The reaction of serin with substituted indole in the presence of acetic anhydride led to racemic tryptophane; with the reaction of protected serin with indole in the presence of nickel complex was unsuccessful; the reaction of serin containing protected dipeptide with disuccinimidyl carbonate we achieved a tryptophane containing dipeptide, its chiral purity is being examined; the reaction of alcohol with substituted indole in the presence of copper complex was successful, but it was only a test reaction, we could not reproduce the same result with serine. The undergoing tryptophan-synthase method has shown some potential, but our work has not been finished yet. The successful synthesis of the desired multiple-fluorinated indole-ring-containing tryptophan will be followed by solid phase peptide synthesis in order to incorporate it into AMPs to enhance their antimicrobial activity. The successful completion of these phases will mean the possibility of manufacturing new, effective AMPs.

Keywords: halogenation, fluorination, tryptophan, enhancement of antimicrobial activity

Procedia PDF Downloads 81
2959 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks

Authors: Bukunola K. Oguntade, Gareth M. Watkins

Abstract:

The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.

Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc

Procedia PDF Downloads 110
2958 Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes

Authors: Zoubida Lounis, Naouel Boumesla, Abd El Kader Bengueddach

Abstract:

The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality.

Keywords: composite materials, syntheisis, catalysts, mesoporous materials, microporous materials

Procedia PDF Downloads 360
2957 Asymmetric Synthesis of Catalponol Using Chiral Iridium Catalyst

Authors: Takeyuki Suzuki, Ismiyarto, Da-Yang Zhou, Kaori Asano, Hiroaki Sasai

Abstract:

The development of catalytic asymmetric reaction is important for the synthesis of natural products. To construct the multiple stereogenic centers, the desymmetrization of meso compounds is powerful strategy for the synthesis of chiral molecules. Oxidative desymmetrization of meso diols using chiral iridium catalyst provides a chiral hydroxyl ketone. The reaction is practical and an environmentally benign method which does not require the use of stoichiometric amount of heavy metals. This time we report here catalytic asymmetric synthesis of catalponol based on tandem coupling of meso-diols and an aldehyde. The tandem reaction includes oxidative desymmetrization of meso-diols, aldol condensation with an aldehyde. The reaction of meso-diol, benzaldehyde in the presence of a catalytic amount of chiral Ir complex and CsOH in tetrahydrofuran afforded the desired benzylidene ketone in 82% yield with 96% ee (enantiomeric excess). Next, we applied this benzylidene ketone derivative to the synthesis of catalponol. The corresponding benzylidene ketone was obtained in 87% yield with 99% ee. Finally, catalponol was synthesized by the regio- and stereo-selective reduction of dienone moiety in good yield.

Keywords: catalponol, desymmetrization, iridium, oxidation

Procedia PDF Downloads 147
2956 Synthesis, Spectral, Thermal, Optical and Dielectric Studies of Some Organic Arylidene Derivatives

Authors: S. Sathiyamoorthi, P. Srinivasan, K. Suganya Devi

Abstract:

Arylidene derivatives are the subclass of chalcone derivatives. Chalcone derivatives are studied widely for the past decade because of its nonlinearity. To seek new organic group of crystals which suit for fabrication of optical devices, three-member organic arylidene crystals were synthesized by using Claisen–Schmidt condensation reaction. Good quality crystals were grown by slow evaporation method. Functional groups were identified by FT-IR and FT-Raman spectrum. Optical transparency and optical band gap were determined by UV-Vis-IR studies. Thermal stability and melting point were calculated using TGA and DSC. Variation of dielectric loss and dielectric constant with frequency were calculated by dielectric measurement.

Keywords: DSC and TGA studies, nonlinear optic studies, Fourier Transform Infrared Spectroscopy, UV-vis-NIR spectra

Procedia PDF Downloads 289
2955 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 61
2954 Pioneer Synthesis and Characterization of Boron Containing Hard Materials

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modified-microwave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).

Keywords: boron containing materials, hard materials, microwave synthesis, powder X-ray diffraction

Procedia PDF Downloads 573
2953 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 234
2952 Facile Synthetic Process for Lamivudine and Emtricitabine

Authors: Devender Mandala, Paul Watts

Abstract:

Cis-Nucleosides mainly lamivudine (3TC) and emtricitabine (FTC) are an important tool in the treatment of Human immune deficiency virus (HIV), Hepatitis B virus (HBV) and Human T-Lymotropoic virus (HTLV). Lamivudine and emtricitabine are potent nucleoside analog reverse transcriptase inhibitors (nRTI). These two drugs are synthesized by a four-stage process from the starting materials: menthyl glyoxylate hydrate and 1,4-dithane-2,5-diol to produce the 5-hydroxy oxathiolane which upon acetylation with acetic anhydride to yield 5-acetoxy oxathiolane. Then glycosylation of this acetyl product with silyl protected nucleoside to produce the intermediate. The reduction of this intermediates can provide the final targets. Although there are several different methods reported for the synthesis of lamivudine and emtricitabine as a single enantiomer, we required an efficient route, which was suitable for large-scale synthesis to support the development of these compounds. In this process, we successfully prepared the intermediates of lamivudine and emtricitabine without using any solvents and catalyst, thus promoting the green synthesis. All the synthesized compound were confirmed by TLC, GC, Mass, NMR and 13C NMR spectroscopy.

Keywords: emtricitabine, green synthesis, lamivudine, nucleoside

Procedia PDF Downloads 206
2951 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: fischer-tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons

Procedia PDF Downloads 257
2950 Synthesis of Magnesium Borates from the Slurries of Magnesium Wastes by Microwave Energy

Authors: N. Tugrul, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

In this research, it is aimed not only microwave synthesis of magnesium borates but also evaluation of magnesium wastes. Synthesis process can be described with the reaction of Mg wastes and boric acid using microwave energy. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to synthesized minerals. According to XRD results, magnesium borate hydrate mixtures were obtained as mcallisterite (pdf# = 01-070-1902, Mg2(B6O7(OH)6)2.9(H2O)) at higher crystallinity properties was achieved at the mole ratio raw material 1:1. Also, other kinds of magnesium borate hydrates were obtained at lower crystallinity such as admontite (pdf # = 01-076-0540, MgO(B2O3)3.7(H2O)), inderite (pdf # = 01-072-2308, 2MgO.3B2O3.15(H2O)) and magnesium borate hydrates (pdf # = 01-076-0539, MgO(B2O3)3.6(H2O)). FT-IR spectrums indicated that minor changes were seen at the band values of characteristic stretching in each experiment. At the end of experiments it is seen that using microwave energy may contribute positive effects to design of synthesis process such as reducing reaction time and products at higher crystallinity.

Keywords: magnesium wastes, boric acid, magnesium borate, microwave energy

Procedia PDF Downloads 326
2949 Assessment of Pollution Cd, Pb and as in Rice Cultivation in Savadkooh

Authors: Ghazal Banitahmasb, Nazanin Khakipour

Abstract:

More than 90 percent of the world's rice is produced and consumed in Asia. Heavy metal contamination of soil and water environments is a serious and growing problem. Toxin by human activities causes pollution in soils so that the intensity of metals in soils was exceeded. This study was done on 7 samples of rice cultivated in Savadkooh of Mazandaran province and soils; they were grown. The amount of heavy metals Arsenic, Lead and Cadmium were measured by atomic absorption. The test results showed that the amount of Lead in rice strain, Tarom A, was 0.768 ppm, the maximum amount of Cadmium in rice strain, Hashemi B, was 0.09 ppm and the highest levels of Arsenic was in red Tarom, 0.39 ppm. According to the results obtained in this study can be found all rice grown in Savadkooh city of Arsenic, Cadmium and Lead, but the measurements are less than specified in the national standard, and their use is safe for consumers. These results also indicate that positive and significant correlation between the studied heavy metals in soil and rice strains that grow there and by increasing the amount of heavy metals in the soil, the amount of these metals in crops grown on them is also increasing.

Keywords: heavy metals, Oryza sativa L., soil pollution, Savadkooh

Procedia PDF Downloads 387
2948 Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants

Authors: Nassima Khanfri, Ali Boucenna

Abstract:

As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications.

Keywords: green synthesis, bio-reduction, metals nan Oparticales, Plants extracts

Procedia PDF Downloads 177
2947 An Impregnated Active Layer Mode of Solution Combustion Synthesis as a Tool for the Solution Combustion Mechanism Investigation

Authors: Zhanna Yermekova, Sergey Roslyakov

Abstract:

Solution combustion synthesis (SCS) is the unique method which multiple times has proved itself as an effective and efficient approach for the versatile synthesis of a variety of materials. It has significant advantages such as relatively simple handling process, high rates of product synthesis, mixing of the precursors on a molecular level, and fabrication of the nanoproducts as a result. Nowadays, an overwhelming majority of solution combustion investigations performed through the volume combustion synthesis (VCS) where the entire liquid precursor is heated until the combustion self-initiates throughout the volume. Less amount of the experiments devoted to the steady-state self-propagating mode of SCS. Under the beforementioned regime, the precursor solution is dried until the gel-like media, and later on, the gel substance is locally ignited. In such a case, a combustion wave propagates in a self-sustaining mode as in conventional solid combustion synthesis. Even less attention is given to the impregnated active layer (IAL) mode of solution combustion. An IAL approach to the synthesis is implying that the solution combustion of the precursors should be initiated on the surface of the third chemical or inside the third substance. This work is aiming to emphasize an underestimated role of the impregnated active layer mode of the solution combustion synthesis for the fundamental studies of the combustion mechanisms. It also serves the purpose of popularizing the technical terms and clarifying the difference between them. In order to do so, the solution combustion synthesis of γ-FeNi (PDF#47-1417) alloy has been accomplished within short (seconds) one-step reaction of metal precursors with hexamethylenetetramine (HTMA) fuel. An idea of the special role of the Ni in a process of alloy formation was suggested and confirmed with the particularly organized set of experiments. The first set of experiments were conducted in a conventional steady-state self-propagating mode of SCS. An alloy was synthesized as a single monophasic product. In two other experiments, the synthesis was divided into two independent processes which are possible under the IAL mode of solution combustion. The sequence of the process was changed according to the equations which are describing an Experiment A and B below: Experiment A: Step 1. Fe(NO₃)₃*9H₂O + HMTA = FeO + gas products; Step 2. FeO + Ni(NO₃)₂*6H₂O + HMTA = Ni + FeO + gas products; Experiment B: Step 1. Ni(NO₃)₂*6H₂O + HMTA = Ni + gas products; Step 2. Ni + Fe(NO₃)₃*9H₂O + HMTA = Fe₃Ni₂+ traces (Ni + FeO). Based on the IAL experiment results, one can see that combustion of the Fe(NO₃)₃9H₂O on the surface of the Ni is leading to the alloy formation while presence of the already formed FeO does not affect the Ni(NO₃)₂*6H₂O + HMTA reaction in any way and Ni is the main product of the synthesis.

Keywords: alloy, hexamethylenetetramine, impregnated active layer mode, mechanism, solution combustion synthesis

Procedia PDF Downloads 110