Search results for: scour equation
1957 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation
Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras
Abstract:
The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation
Procedia PDF Downloads 1501956 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation
Procedia PDF Downloads 1531955 Study on the Central Differencing Scheme with the Staggered Version (STG) for Solving the Hyperbolic Partial Differential Equations
Authors: Narumol Chintaganun
Abstract:
In this paper we present the second-order central differencing scheme with the staggered version (STG) for solving the advection equation and Burger's equation. This scheme based on staggered evolution of the re-constructed cell averages. This scheme results in the second-order central differencing scheme, an extension along the lines of the first-order central scheme of Lax-Friedrichs (LxF) scheme. All numerical simulations presented in this paper are obtained by finite difference method (FDM) and STG. Numerical results are shown that the STG gives very good results and higher accuracy.Keywords: central differencing scheme, STG, advection equation, burgers equation
Procedia PDF Downloads 5571954 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers
Authors: H. Ozbasaran
Abstract:
IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.Keywords: cantilever, IPN, IPE, lateral torsional buckling
Procedia PDF Downloads 5401953 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects
Authors: H. Triki, Y. Hamaizi, A. El-Akrmi
Abstract:
We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution
Procedia PDF Downloads 6351952 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity
Authors: Mishu Gupta, Rama Gupta
Abstract:
It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation
Procedia PDF Downloads 1551951 A Dynamic Equation for Downscaling Surface Air Temperature
Authors: Ch. Surawut, D. Sukawat
Abstract:
In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.Keywords: dynamic equation, downscaling, inverse distance, weight interpolation
Procedia PDF Downloads 3041950 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat
Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood
Abstract:
Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion
Procedia PDF Downloads 4961949 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian
Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma
Abstract:
In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental
Procedia PDF Downloads 2091948 Modeling of Physico-Chemical Characteristics of Concrete for Filling Trenches in Radioactive Waste Management
Authors: Ilija Plecas, Dalibor Arbutina
Abstract:
The leaching rate of 60Co from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source, an equation for diffusion coupled to a first order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.Keywords: cement, concrete, immobilization, leaching, permeability, radioactivity, waste
Procedia PDF Downloads 3231947 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments
Authors: Mehtap Lafcı
Abstract:
In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments
Procedia PDF Downloads 5151946 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems
Procedia PDF Downloads 4041945 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 1001944 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 5031943 Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities
Authors: Sumit Kumar Vishwakarma
Abstract:
The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity.Keywords: Rayleigh waves, orthotropic medium, gravity field, inhomogeneity
Procedia PDF Downloads 1271942 Dynamical Heterogeneity and Aging in Turbulence with a Nambu-Goldstone Mode
Authors: Fahrudin Nugroho, Halim Hamadi, Yusril Yusuf, Pekik Nurwantoro, Ari Setiawan, Yoshiki Hidaka
Abstract:
We investigate the Nikolaevskiy equation numerically using exponential time differencing method and pseudo-spectral method. This equation develops a long-wavelength modulation that behaves as a Nambu–Goldstone mode, and short-wavelength instability and exhibit turbulence. Using the autocorrelation analysis, the statistical properties of the turbulence governed by the equation are investigated. The autocorrelation then has been fitted with The Kohlrausch– Williams–Watts (KWW) expression. By varying the control parameter, we show a transition from compressed to stretched exponential for the auto-correlation function of Nikolaevskiy turbulence. The compressed exponential is an indicator of the existence of dynamical heterogeneity while the stretched indicates aging process. Thereby, we revealed the existence of dynamical heterogeneity and aging in the turbulence governed by Nikolaevskiy equation.Keywords: compressed exponential, dynamical heterogeneity, Nikolaevskiy equation, stretched exponential, turbulence
Procedia PDF Downloads 4361941 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula
Procedia PDF Downloads 5001940 Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity
Authors: Aria Ratmandanu
Abstract:
Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter).Keywords: axion, boson star, dark galaxy, time-dependent spherically symmetric spacetime
Procedia PDF Downloads 2431939 Correction Requirement to AISC Design Guide 31: Case Study of Web Post Buckling Design for Castellated Beams
Authors: Kitjapat Phuvoravan, Phattaraphong Ponsorn
Abstract:
In the design of Castellated beams (CB), the web post buckling acted by horizontal shear force is one of the important failure modes that have to be considered. It is also a dominant governing mode when design following the AISC 31 design guideline which is just published. However, the equation of the web post buckling given by the guideline is still questionable for most of the engineers. So the purpose of this paper is to study and provide a proposed equation for design the web post buckling with more simplified and convenient to use. The study is also including the improper of the safety factor given by the guideline. The proposed design equation is acquired by regression method based on the results of finite element analysis. An amount of Cellular beam simulated to study is modelled by using shell element, analysis with both geometric and material nonlinearity. The results of the study show that the use of the proposed equation to design the web post buckling in Castellated beams is more simple and precise for computation than the equations provided from the guideline.Keywords: castellated beam, web opening, web post buckling, design equation
Procedia PDF Downloads 3021938 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media
Authors: Olayiwola Moruf Oyedunsi
Abstract:
This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation
Procedia PDF Downloads 3211937 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.Keywords: Parkinson's disease, stability, simulation, two delay differential equation
Procedia PDF Downloads 1301936 Elvis Improved Method for Solving Simultaneous Equations in Two Variables with Some Applications
Authors: Elvis Adam Alhassan, Kaiyu Tian, Akos Konadu, Ernest Zamanah, Michael Jackson Adjabui, Ibrahim Justice Musah, Esther Agyeiwaa Owusu, Emmanuel K. A. Agyeman
Abstract:
In this paper, how to solve simultaneous equations using the Elvis improved method is shown. The Elvis improved method says; to make one variable in the first equation the subject; make the same variable in the second equation the subject; equate the results and simplify to obtain the value of the unknown variable; put the value of the variable found into one equation from the first or second steps and simplify for the remaining unknown variable. The difference between our Elvis improved method and the substitution method is that: with Elvis improved method, the same variable is made the subject in both equations, and the two resulting equations equated, unlike the substitution method where one variable is made the subject of only one equation and substituted into the other equation. After describing the Elvis improved method, findings from 100 secondary students and the views of 5 secondary tutors to demonstrate the effectiveness of the method are presented. The study's purpose is proved by hypothetical examples.Keywords: simultaneous equations, substitution method, elimination method, graphical method, Elvis improved method
Procedia PDF Downloads 1371935 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran
Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh
Abstract:
Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.Keywords: evapotranspiration, hargreaves, equation, FAO-Penman method
Procedia PDF Downloads 3951934 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method
Authors: A. Zerarka, W. Djoudi
Abstract:
The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions
Procedia PDF Downloads 6621933 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow
Authors: Itissam Abuiziah
Abstract:
In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers
Procedia PDF Downloads 1871932 On CR-Structure and F-Structure Satisfying Polynomial Equation
Authors: Manisha Kankarej
Abstract:
The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor
Procedia PDF Downloads 5251931 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions
Authors: Matheus Fernando Pereira, Varese Salvador Timoteo
Abstract:
In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source
Procedia PDF Downloads 2391930 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia
Authors: Ted Silva
Abstract:
Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.Keywords: pornography studies, queer cinema, French cinema, history
Procedia PDF Downloads 1351929 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation
Authors: Tomoaki Hashimoto
Abstract:
Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.Keywords: optimal control, stochastic systems, quantum systems, stabilization
Procedia PDF Downloads 4581928 Timing Equation for Capturing Satellite Thermal Images
Authors: Toufic Abd El-Latif Sadek
Abstract:
The Asphalt object represents the asphalted areas, like roads. The best original data of thermal images occurred at a specific time during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects, using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found in this study a general timing equation for capturing satellite thermal images at different locations, depends on a fixed time the sunrise and sunset; Capture Time= Tcap =(TM*TSR) ±TS.Keywords: asphalt, satellite, thermal images, timing equation
Procedia PDF Downloads 350