Search results for: relative prices
2769 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field
Authors: A. J. Nazari, S. Honma
Abstract:
This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.Keywords: fractional flow, oil displacement, relative permeability, simultaneously flow
Procedia PDF Downloads 3922768 Investments in Petroleum Industry Abnormally Normal: A Case Study Based on Petroleum and Natural Gas Companies in India
Authors: Radhika Ramanchi
Abstract:
The oil market during 2014-2015 in India with large price fluctuations is very confusing to individual investor. The drop in oil prices supported stocks of some oil marketing companies (OMCs) like Bharat Petroleum Corporation, Hindustan Petroleum Corporation (HPCL) and Indian Oil Corporation etc their shares rose 84.74%, 128.63% and 59.16%, respectively. Lower oil prices, and lower current account, a smaller subsidy burden are the reasons for outperformance. On the other hand, lower crude prices giving downward pressure on upstream companies like Oil and Natural Gas Corp. Ltd (ONGC) and Reliance Petroleum (RIL) Oil India Ltd (OIL). Not having clarity on a subsidy sharing mechanism is the reason for downward trend on these stocks. Shares of ONGC and RIL have underperformed so far in 2015. When the oil price fall profits of the companies will effect, generate less money and may cut their dividends in Long run. In this situation this paper objective is to study investment strategies in oil marketing companies, by applying CAPM and Security Market Line.Keywords: petrol industry, price fluctuations, sharp single index model, SML, Markowitz model
Procedia PDF Downloads 2232767 Analysing the Influence of COVID-19 on Major Agricultural Commodity Prices in South Africa
Authors: D. Mokatsanyane, J. Jansen Van Rensburg
Abstract:
This paper analyses the influence and impact of COVID-19 on major agricultural commodity prices in South Africa. According to a World Bank report, the agricultural sector in South Africa has been unable to reduce the domestic food crisis that has been occurring over the past years, hence the increased rate of poverty, which is currently at 55.5 percent as of April 2020. Despite the significance of this sector, empirical findings concluded that the agricultural sector now accounts for 1.88 percent of South Africa's gross domestic product (GDP). Suggesting that the agricultural sector's contribution to the economy has diminished. Despite the low contribution to GDP, this primary sector continues to play an essential role in the economy. Over the past years, multiple factors have contributed to the soaring commodities prices, namely, climate shocks, biofuel demand, demand and supply shocks, the exchange rate, speculation in commodity derivative markets, trade restrictions, and economic growth. The COVID-19 outbursts have currently disturbed the supply and demand of staple crops. To address the disruption, the government has exempted the agricultural sector from closure and restrictions on movement. The spread of COVID-19 has caused turmoil all around the world, but mostly in developing countries. According to Statistic South Africa, South Africa's economy decreased by seven percent in 2020. Consequently, this has arguably made the agricultural sector the most affected sector since slumped economic growth negatively impacts food security, trade, farm livelihood, and greenhouse gas emissions. South Africa is sensitive to the fruitfulness of global food chains. Restrictions in trade, reinforced sanitary control systems, and border controls have influenced food availability and prices internationally. The main objective of this study is to evaluate the behavior of agricultural commodity prices pre-and during-COVID to determine the impact of volatility drivers on these crops. Historical secondary data of spot prices for the top five major commodities, namely white maize, yellow maize, wheat, soybeans, and sunflower seeds, are analysed from 01 January 2017 to 1 September 2021. The timeframe was chosen to capture price fluctuations between pre-COVID-19 (01 January 2017 to 23 March 2020) and during-COVID-19 (24 March 2020 to 01 September 2021). The Generalised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be used to measure the influence of price fluctuations. The results reveal that the commodity market has been experiencing volatility at different points. Extremely high volatility is represented during the first quarter of 2020. During this period, there was high uncertainty, and grain prices were very volatile. Despite the influence of COVID-19 on agricultural prices, the demand for these commodities is still existing and decent. During COVID-19, analysis indicates that prices were low and less volatile during the pandemic. The prices and returns of these commodities were low during COVID-19 because of the government's actions to respond to the virus's spread, which collapsed the market demand for food commodities.Keywords: commodities market, commodity prices, generalised autoregressive conditional heteroscedasticity (GARCH), Price volatility, SAFEX
Procedia PDF Downloads 1742766 Effect of Relative Humidity on Corrosion Behavior of SN-0.7Cu Solder under Polyvinyl Chloride Fire Smoke Atmosphere
Authors: Qian Li, Shouxiang Lu
Abstract:
With the rapid increase in electric power use, wire and cable fire occur more and more frequent. The fire smoke has a corrosive effect on the solders, which seriously affects the function of electronic equipment. In this research, the effect of environment relative humidity on corrosion behavior of Sn-0.7Cu solder has been researched under 140 g·m⁻³ polyvinyl chloride (PVC) fire smoke atmosphere. The mass loss of Sn-0.7Cu solder increased with the relative humidity. Furthermore, the microstructures and corrosion mechanism were analyzed by using SEM, EDS, XRD, and XPS. The result shows that Sn₂₁Cl₁₆(OH)₁₄O₆ is the main corrosion products and the corrosion process is an electrochemical reaction. The present work could provide guidance to the risk assessment for electronic equipment rescue after a fire.Keywords: corrosion, fire smoke, relative humidity, Sn-0.7Cu solder
Procedia PDF Downloads 3652765 Investor Psychology, Housing Prices, and Stock Market Response to Policy Decisions During the Covid-19 Recession in the United States
Authors: Ly Nguyen, Vidit Munshi
Abstract:
During the Covid-19 recession, the United States government has implemented several instruments to mitigate the impacts and revitalize the economy. This paper explores the effects of the various government policy decisions on stock returns, housing prices, and investor psychology during the pandemic in the United States. A numerous previous literature studies on this subject, yet very few focus on the context similar to what we are currently experiencing. Our monthly data covering the period from January 2019 through July 2021 were collected from Datastream. Utilizing the VAR model, we document a dynamic relationship between the market and policy actions throughout the period. In particular, the movements of Unemployment, Stock returns, and Housing prices are strongly sensitive to changes in government policies. Our results also indicate that changes in production level, stock returns, and interest rates decisions influence how investors perceived future market risk and expectations. We do not find any significant nexus between monetary and fiscal policy. Our findings imply that information on government policy and stock market performance provide useful feedback to one another in order to make better decisions in the current and future pandemic. Understanding how the market responds to a shift in government practices has important implications for authorities in implementing policy to avoid assets bubbles and market overreactions. The paper also provides useful implications for investors in evaluating the effectiveness of different policies and diversifying portfolios to minimize systematic risk and maximize returns.Keywords: Covid-19 recession, United States, government policies, investor psychology, housing prices, stock market returns
Procedia PDF Downloads 1722764 Design and Development of E-Commerce Web Application for Shopping Management System
Authors: Siddarth A., Bhoomika K.
Abstract:
Campuskart is a web-based platform that enables college students to buy and sell various items related to electronics, books, project materials, and electronic gadgets at reasonable prices. The application offers students the opportunity to resell their items at valuable and worthwhile prices, while also providing customers with the chance to purchase items at a lower price than the market price. The forthcoming paper will outline the various processes involved in developing the web application, including the design process, methodology, and overall functioning of the system. It will offer a comprehensive overview of how the platform operates and how it can benefit college students looking for affordable and convenient options for buying and selling various items.Keywords: campuskart, web development, data structures, studentfriendlywebsite
Procedia PDF Downloads 722763 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA
Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz
Abstract:
This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH–independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.Keywords: DNA and RNA models, relative rates, reactivity, phosphoryl transfe
Procedia PDF Downloads 4232762 Intangible Capital and Stock Prices: A Study of Jordanian Companies
Authors: Almoutassem Bellah Nasser
Abstract:
This paper is aimed at calculating the intangible assets of Jordanian economy. This effort is a response to the demand from corporations for these services which reflects a perceived gap in internal and external financial reporting on intangible investments. The main conclusion of the paper is to suggest that the way forward to a standardized, more comparable approach to measuring intangible capital is to employ CIV method of valuation. Published macroeconomic data traditionally exclude most intangible investment from measured GDP. This situation is beginning to change as some attempts have been made to measure the amount of intangible assets. It was found that intangible assets account for $164.20 million in all the listed companies of Jordan. All this money does not appear on the balance sheets of these companies and hence requires special attention of policy makers for better utilization.Keywords: intangible capital, stock prices, Amman Stock Exchange
Procedia PDF Downloads 3782761 Climate Change Effects on Agriculture
Authors: Abdellatif Chebboub
Abstract:
Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.Keywords: climate change, agriculture, weather change, danger of climate change
Procedia PDF Downloads 3162760 Dynamic Analysis of Commodity Price Fluctuation and Fiscal Management in Sub-Saharan Africa
Authors: Abidemi C. Adegboye, Nosakhare Ikponmwosa, Rogers A. Akinsokeji
Abstract:
For many resource-rich developing countries, fiscal policy has become a key tool used for short-run fiscal management since it is considered as playing a critical role in injecting part of resource rents into the economies. However, given its instability, reliance on revenue from commodity exports renders fiscal management, budgetary planning and the efficient use of public resources difficult. In this study, the linkage between commodity prices and fiscal operations among a sample of commodity-exporting countries in sub-Saharan Africa (SSA) is investigated. The main question is whether commodity price fluctuations affects the effectiveness of fiscal policy as a macroeconomic stabilization tool in these countries. Fiscal management effectiveness is considered as the ability of fiscal policy to react countercyclically to output gaps in the economy. Fiscal policy is measured as the ratio of fiscal deficit to GDP and the ratio of government spending to GDP, output gap is measured as a Hodrick-Prescott filter of output growth for each country, while commodity prices are associated with each country based on its main export commodity. Given the dynamic nature of fiscal policy effects on the economy overtime, a dynamic framework is devised for the empirical analysis. The panel cointegration and error correction methodology is used to explain the relationships. In particular, the study employs the panel ECM technique to trace short-term effects of commodity prices on fiscal management and also uses the fully modified OLS (FMOLS) technique to determine the long run relationships. These procedures provide sufficient estimation of the dynamic effects of commodity prices on fiscal policy. Data used cover the period 1992 to 2016 for 11 SSA countries. The study finds that the elasticity of the fiscal policy measures with respect to the output gap is significant and positive, suggesting that fiscal policy is actually procyclical among the countries in the sample. This implies that fiscal management for these countries follows the trend of economic performance. Moreover, it is found that fiscal policy has not performed well in delivering macroeconomic stabilization for these countries. The difficulty in applying fiscal stabilization measures is attributable to the unstable revenue inflows due to the highly volatile nature of commodity prices in the international market. For commodity-exporting countries in SSA to improve fiscal management, therefore, fiscal planning should be largely decoupled from commodity revenues, domestic revenue bases must be improved, and longer period perspectives in fiscal policy management are the critical suggestions in this study.Keywords: commodity prices, ECM, fiscal policy, fiscal procyclicality, fully modified OLS, sub-saharan africa
Procedia PDF Downloads 1632759 Evidence on the Nature and Extent of Fall in Oil Prices on the Financial Performance of Listed Companies: A Ratio Analysis Case Study of the Insurance Sector in the UAE
Authors: Pallavi Kishore, Mariam Aslam
Abstract:
The sharp decline in oil prices that started in 2014 affected most economies in the world either positively or negatively. In some economies, particularly the oil exporting countries, the effects were felt immediately. The Gulf Cooperation Council’s (GCC henceforth) countries are oil and gas-dependent with the largest oil reserves in the world. UAE (United Arab Emirates) has been striving to diversify away from oil and expects higher non-oil growth in 2018. These two factors, falling oil prices and the economy strategizing away from oil dependence, make a compelling case to study the financial performance of various sectors in the economy. Among other sectors, the insurance sector is widely recognized as an important indicator of the health of the economy. An expanding population, surge in construction and infrastructure, increased life expectancy, greater expenditure on automobiles and other luxury goods translate to a booming insurance sector. A slow-down of the insurance sector, on the other hand, may indicate a general slow-down in the economy. Therefore, a study on the insurance sector will help understand the general nature of the current economy. This study involves calculations and comparisons of ratios pre and post the fall in oil prices in the insurance sector in the UAE. A sample of 33 companies listed on the official stock exchanges of UAE-Dubai Financial Market and Abu Dhabi Stock Exchange were collected and empirical analysis employed to study the financial performance pre and post fall in oil prices. Ratios were calculated in 5 categories: Profitability, Liquidity, Leverage, Efficiency, and Investment. The means pre- and post-fall are compared to conclude that the profitability ratios including ROSF (Return on Shareholder Funds), ROCE (Return on Capital Employed) and NPM (Net Profit Margin) have all taken a hit. Parametric tests, including paired t-test, concludes that while the fall in profitability ratios is statistically significant, the other ratios have been quite stable in the period. The efficiency, liquidity, gearing and investment ratios have not been severely affected by the fall in oil prices. This may be due to the implementation of stronger regulatory policies and is a testimony to the diversification into the non-oil economy. The regulatory authorities can use the findings of this study to ensure transparency in revealing financial information to the public and employ policies that will help further the health of the economy. The study will also help understand which areas within the sector could benefit from more regulations.Keywords: UAE, insurance sector, ratio analysis, oil price, profitability, liquidity, gearing, investment, efficiency
Procedia PDF Downloads 2442758 Applying the Fuzzy Analytic Network Process to Establish the Relative Importance of Knowledge Sharing Barriers
Authors: Van Dong Phung, Igor Hawryszkiewycz, Kyeong Kang, Muhammad Hatim Binsawad
Abstract:
Knowledge sharing (KS) is the key to creativity and innovation in any organizations. Overcoming the KS barriers has created new challenges for designing in dynamic and complex environment. There may be interrelations and interdependences among the barriers. The purpose of this paper is to present a review of literature of KS barriers and impute the relative importance of them through the fuzzy analytic network process that is a generalization of the analytical hierarchy process (AHP). It helps to prioritize the barriers to find ways to remove them to facilitate KS. The study begins with a brief description of KS barriers and the most critical ones. The FANP and its role in identifying the relative importance of KS barriers are explained. The paper, then, proposes the model for research and expected outcomes. The study suggests that the use of the FANP is appropriate to impute the relative importance of KS barriers which are intertwined and interdependent. Implications and future research are also proposed.Keywords: FANP, ANP, knowledge sharing barriers, knowledge sharing, removing barriers, knowledge management
Procedia PDF Downloads 3332757 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 1182756 Causal Relationship between Macro-Economic Indicators and Fund Unit Price Behaviour: Evidence from Malaysian Equity Unit Trust Fund Industry
Authors: Anwar Hasan Abdullah Othman, Ahamed Kameel, Hasanuddeen Abdul Aziz
Abstract:
In this study, an attempt has been made to investigate the relationship specifically the causal relation between fund unit prices of Islamic equity unit trust fund which measure by fund NAV and the selected macro-economic variables of Malaysian economy by using VECM causality test and Granger causality test. Monthly data has been used from Jan, 2006 to Dec, 2012 for all the variables. The findings of the study showed that industrial production index, political election and financial crisis are the only variables having unidirectional causal relationship with fund unit price. However, the global oil prices is having bidirectional causality with fund NAV. Thus, it is concluded that the equity unit trust fund industry in Malaysia is an inefficient market with respect to the industrial production index, global oil prices, political election and financial crisis. However, the market is approaching towards informational efficiency at least with respect to four macroeconomic variables, treasury bill rate, money supply, foreign exchange rate and corruption index.Keywords: fund unit price, unit trust industry, Malaysia, macroeconomic variables, causality
Procedia PDF Downloads 4702755 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices
Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe
Abstract:
An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.Keywords: electricity prices, realized volatility, semivariances, volatility spillovers
Procedia PDF Downloads 1752754 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model
Authors: Zichun Guo
Abstract:
Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.Keywords: POI, house price, spatial heterogeneity, Guangzhou
Procedia PDF Downloads 552753 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment
Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut
Abstract:
Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems
Procedia PDF Downloads 4602752 Value Relevance of Accounting Information: Empirical Evidence from China
Authors: Ying Guo, Miaochan Li, David Yang, Xiao-Yan Li
Abstract:
This paper examines the relevance of accounting information to stock prices at different periods using manufacturing companies listed in China’s Growth Enterprise Market (GEM). We find that both the average stock price at fiscal year-end and the average stock price one month after fiscal year-end are more relevant to the accounting information than the closing stock price four months after fiscal year-end. This implies that Chinese stock markets react before the public disclosure of accounting information, which may be due to information leak before official announcements. Our findings confirm that accounting information is relevant to stock prices for Chinese listed manufacturing companies, which is a critical question to answer for investors who have interest in Chinese companies.Keywords: accounting information, response time, value relevance, stock price
Procedia PDF Downloads 962751 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control
Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo
Abstract:
Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.Keywords: leak testing, spacecraft parts, relative error, error control
Procedia PDF Downloads 4562750 Effect of Oil Viscosity and Brine Salinity/Viscosity on Water/Oil Relative Permeability and Residual Saturations
Authors: Sami Aboujafar
Abstract:
Oil recovery in petroleum reservoirs is greatly affected by fluid-rock and fluid-fluid interactions. These interactions directly control rock wettability, capillary pressure and relative permeability curves. Laboratory core-floods and centrifuge experiments were conducted on sandstone and carbonate cores to study the effect of low and high brine salinity and viscosity and oil viscosity on residual saturations and relative permeability. Drainage and imbibition relative permeability in two phase system were measured, refined lab oils with different viscosities, heavy and light, and several brine salinities were used. Sensitivity analysis with different values for the salinity and viscosity of the fluids,, oil and water, were done to investigate the effect of these properties on water/oil relative permeability, residual oil saturation and oil recovery. Experiments were conducted on core material from viscous/heavy and light oil fields. History matching core flood simulator was used to study how the relative permeability curves and end point saturations were affected by different fluid properties using several correlations. Results were compared with field data and literature data. The results indicate that there is a correlation between the oil viscosity and/or brine salinity and residual oil saturation and water relative permeability end point. Increasing oil viscosity reduces the Krw@Sor and increases Sor. The remaining oil saturation from laboratory measurements might be too high due to experimental procedures, capillary end effect and early termination of the experiment, especially when using heavy/viscous oil. Similarly the Krw@Sor may be too low. The effect of wettability on the observed results is also discussed. A consistent relationship has been drawn between the fluid parameters, water/oil relative permeability and residual saturations, and a descriptor may be derived to define different flow behaviors. The results of this work will have application to producing fields and the methodologies developed could have wider application to sandstone and carbonate reservoirs worldwide.Keywords: history matching core flood simulator, oil recovery, relative permeability, residual saturations
Procedia PDF Downloads 3372749 Long-Term Modal Changes in International Traffic - Modelling Exercise
Authors: Tomasz Komornicki
Abstract:
The primary aim of the presentation is to try to model border traffic and, at the same time to explain on which economic variables the intensity of border traffic depended in the long term. For this purpose, long series of traffic data on the Polish borders were used. Models were estimated for three variants of explanatory variables: a) for total arrivals and departures (total movement of Poles and foreigners), b) for arrivals and departures of Poles, and c) for arrivals and departures of foreigners. Each of the defined explanatory variables in the models appeared as the logarithm of the natural number of persons. Data from 1994-2017 were used for modeling (for internal Schengen borders for the years 1994-2007). Information on the number of people arriving in and leaving Poland was collected for a total of 303 border crossings. On the basis of the analyses carried out, it was found that one of the main factors determining border traffic is generally differences in the level of economic development (GDP) and the condition of the economy (level of unemployment) and the degree of border permeability. Also statistically significant for border traffic are differences in the prices of goods (fuels, tobacco, and alcohol products) and services (mainly basic ones, e.g., hairdressing services). Such a relationship exists mainly on the eastern border (border traffic determined largely by differences in the prices of goods) and on the border with Germany (in the first analysed period, border traffic was determined mainly by the prices of goods, later - after Poland's accession to the EU and the Schengen area - also by the prices of services). The models also confirmed differences in the set of factors shaping the volume and structure of border traffic on the Polish borders resulting from general geopolitical conditions, with the year 2007 being an important caesura, after which the classical population mobility factors became visible. The results obtained were additionally related to changes in traffic that occurred as a result of the CPOVID-19 pandemic and as a result of the Russian aggression against Ukraine.Keywords: border, modal structure, transport, Ukraine
Procedia PDF Downloads 1152748 The Impact of Bitcoin on Stock Market Performance
Authors: Oliver Takawira, Thembi Hope
Abstract:
This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.Keywords: bitcoin, stock market, interest rates, ARDL
Procedia PDF Downloads 1072747 Impact of Financial Performance Indicators on Share Price of Listed Pharmaceutical Companies in India
Authors: Amit Das
Abstract:
Background and significance of the study: Generally investors and market forecasters use financial statement for investigation while it awakens contribute to investing. The main vicinity of financial accounting and reporting practices recommends a few basic financial performance indicators, namely, return on capital employed, return on assets and earnings per share, which is associated considerably with share prices. It is principally true in case of Indian pharmaceutical companies also. Share investing is intriguing a financial risk in addition to investors look for those financial evaluations which have noteworthy shock on share price. A crucial intention of financial statement analysis and reporting is to offer information which is helpful predominantly to exterior clients in creating credit as well as investment choices. Sound financial performance attracts the investors automatically and it will increase the share price of the respective companies. Keeping in view of this, this research work investigates the impact of financial performance indicators on share price of pharmaceutical companies in India which is listed in the Bombay Stock Exchange. Methodology: This research work is based on secondary data collected from moneycontrol database on September 28, 2015 of top 101 pharmaceutical companies in India. Since this study selects four financial performance indicators purposively and availability in the database, that is, earnings per share, return on capital employed, return on assets and net profits as independent variables and one dependent variable, share price of 101 pharmaceutical companies. While analysing the data, correlation statistics, multiple regression technique and appropriate test of significance have been used. Major findings: Correlation statistics show that four financial performance indicators of 101 pharmaceutical companies are associated positively and negatively with its share price and it is very much significant that more than 80 companies’ financial performances are related positively. Multiple correlation test results indicate that financial performance indicators are highly related with share prices of the selected pharmaceutical companies. Furthermore, multiple regression test results illustrate that when financial performances are good, share prices have been increased steadily in the Bombay stock exchange and all results are statistically significant. It is more important to note that sensitivity indices were changed slightly through financial performance indicators of selected pharmaceutical companies in India. Concluding statements: The share prices of pharmaceutical companies depend on the sound financial performances. It is very clear that share prices are changed with the movement of two important financial performance indicators, that is, earnings per share and return on assets. Since 101 pharmaceutical companies are listed in the Bombay stock exchange and Sensex are changed with this, it is obvious that Government of India has to take important decisions regarding production and exports of pharmaceutical products so that financial performance of all the pharmaceutical companies are improved and its share price are increased positively.Keywords: financial performance indicators, share prices, pharmaceutical companies, India
Procedia PDF Downloads 3062746 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa
Authors: Yegnanew A. Shiferaw
Abstract:
Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility
Procedia PDF Downloads 2022745 Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective
Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg
Abstract:
The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap.Keywords: derivatives, hedging, price risk, sunflower, sunflower oil, South Africa
Procedia PDF Downloads 1652744 Relative Entropy Used to Determine the Divergence of Cells in Single Cell RNA Sequence Data Analysis
Authors: An Chengrui, Yin Zi, Wu Bingbing, Ma Yuanzhu, Jin Kaixiu, Chen Xiao, Ouyang Hongwei
Abstract:
Single cell RNA sequence (scRNA-seq) is one of the effective tools to study transcriptomics of biological processes. Recently, similarity measurement of cells is Euclidian distance or its derivatives. However, the process of scRNA-seq is a multi-variate Bernoulli event model, thus we hypothesize that it would be more efficient when the divergence between cells is valued with relative entropy than Euclidian distance. In this study, we compared the performances of Euclidian distance, Spearman correlation distance and Relative Entropy using scRNA-seq data of the early, medial and late stage of limb development generated in our lab. Relative Entropy is better than other methods according to cluster potential test. Furthermore, we developed KL-SNE, an algorithm modifying t-SNE whose definition of divergence between cells Euclidian distance to Kullback–Leibler divergence. Results showed that KL-SNE was more effective to dissect cell heterogeneity than t-SNE, indicating the better performance of relative entropy than Euclidian distance. Specifically, the chondrocyte expressing Comp was clustered together with KL-SNE but not with t-SNE. Surprisingly, cells in early stage were surrounded by cells in medial stage in the processing of KL-SNE while medial cells neighbored to late stage with the process of t-SNE. This results parallel to Heatmap which showed cells in medial stage were more heterogenic than cells in other stages. In addition, we also found that results of KL-SNE tend to follow Gaussian distribution compared with those of the t-SNE, which could also be verified with the analysis of scRNA-seq data from another study on human embryo development. Therefore, it is also an effective way to convert non-Gaussian distribution to Gaussian distribution and facilitate the subsequent statistic possesses. Thus, relative entropy is potentially a better way to determine the divergence of cells in scRNA-seq data analysis.Keywords: Single cell RNA sequence, Similarity measurement, Relative Entropy, KL-SNE, t-SNE
Procedia PDF Downloads 3402743 Human Health Risks Assessment of Particulate Air Pollution in Romania
Authors: Katalin Bodor, Zsolt Bodor, Robert Szep
Abstract:
The particulate matter (PM) smaller than 2.5 μm are less studied due to the limited availability of PM₂.₅, and less information is available on the health effects attributable to PM₁₀ in Central-Eastern Europe. The objective of the current study was to assess the human health risk and characterize the spatial and temporal variation of PM₂.₅ and PM₁₀ in eight Romanian regions between the 2009-2018 and. The PM concentrations showed high variability over time and spatial distribution. The highest concentration was detected in the Bucharest region in the winter period, and the lowest was detected in West. The relative risk caused by the PM₁₀ for all-cause mortality varied between 1.017 (B) and 1.025 (W), with an average 1.020. The results demonstrate a positive relative risk of cardiopulmonary and lung cancer disease due to exposure to PM₂.₅ on the national average 1.26 ( ± 0.023) and 1.42 ( ± 0.037), respectively.Keywords: PM₂.₅, PM₁₀, relative risk, health effect
Procedia PDF Downloads 1612742 Smart Grid Simulator
Authors: Ursachi Andrei
Abstract:
The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.Keywords: smart grid, sustainable energy, applied science, renewable energy sources
Procedia PDF Downloads 3472741 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company
Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.Keywords: GeG company, maintainability, maintenance costs, reliability-center-maintenance
Procedia PDF Downloads 2212740 Stock Price Prediction with 'Earnings' Conference Call Sentiment
Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu
Abstract:
Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.Keywords: earnings call script, random forest, sentiment analysis, stock price prediction
Procedia PDF Downloads 292