Search results for: proteus mirabilis
14 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application
Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel
Abstract:
Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter
Procedia PDF Downloads 29213 Nutritional Characteristics, Phytochemical and Antimicrobial Potential of Leaf Protein Concentrates from Huckleberry
Authors: Sodamade Abiodun, Adeboye Olubunmi Omolara
Abstract:
Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that can serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of Huckleberry was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education campus, Oyo. The sample was authenticated at the forestry research institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition; mineral analysis phytochemical and antimicrobial properties of the leaf protein concentrates were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive results of the mineral analysis showed that the sample contains Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g while cadmium was not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, steroid, Terpenoid, cordial glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Huckleberry leaf protein concentrates showed that it contains bioactive compounds that are capable of eradicating some tested microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisidlae pneumonia and Proteus merabilis. The results of the analysis of leaf protein concentrates of Huckleberry showed that the sample contains high nutrient and mineral constituents and phytochemical compounds that could make the sample useful for medicinal activities.Keywords: huckleberry, mentha piperita, phytochemical, leaf protein concentrates, nutritional characteristics
Procedia PDF Downloads 8912 Molecular Characterization of Major Isolated Organism Involved in Bovine Subclinical Mastitis
Authors: H. K. Ratre, M. Roy, S. Roy, M. S. Parmar, V. Bhagat
Abstract:
Mastitis is a common problem of dairy industries. Reduction in milk production and an irreparable damage to the udder associated with the disease are common causes of culling of dairy cows. Milk from infected animals is not suitable for drinking and for making different milk products. So, it has a major economic importance in dairy cattle. The aims of this study were to investigate the bacteriological panorama in milk from udder quarters with subclinical mastitis and to carried out for the molecular characterization of the major isolated organisms, from subclinical mastitis-affected cows in and around Durg and Rajnandgaon district of Chhattisgarh. Isolation and identification of bacteria from the milk samples of subclinical mastitis-affected cows were done by standard and routine culture procedures. A total of 78 isolates were obtained from cows and among the various bacteria isolated, Staphylococcus spp. occupied prime position with occurrence rate of 51.282%. However, other bacteria isolated includeStreptococcus spp. (20.512%), Micrococcus spp. (14.102%), E. coli (8.974%), Klebsiela spp. (2.564%), Salmonella spp. (1.282%) and Proteus spp. (1.282%). Staphylococcus spp. was isolated as the major causative agent of subclinical mastitis in the studied area. Molecular characterization of Staphylococus aureusisolates was done for genetic expression of the virulence genes like ‘nuc’ encoding thermonucleaseexoenzyme, coa and spa by PCR amplification of the respective genes in 25 Staphylococcus isolates. In the present study, 15 isolates (77.27%) out of 20 coagulase positive isolates were found to be genotypically positive for ‘nuc’ where as 20 isolates (52.63%) out of 38 CNS expressed the presence of the same virulence gene. In the present study, three Staphylococcus isolates were found to be genotypically positive for coa gene. The Amplification of the coa gene yielded two different products of 627, 710 bp. The amplification of the gene segment encoding the IgG binding region of protein A (spa) revealed a size of 220 and 253bp in twostaphylococcus isolates. The X-region binding of the spa gene produced an amplicon of 315 bp in one Staphylococcal isolates. Staphylococcus aureus was found to be major isolate (51.28%) responsible for causing subclinical mastitis in cows which also showed expression of virulence genesnuc, coa and spa.Keywords: mastitis, bacteria, characterization, expression, gene
Procedia PDF Downloads 21511 Recovery and Identification of Phenolic Acids in Honey Samples from Different Floral Sources of Pakistan Having Antimicrobial Activity
Authors: Samiyah Tasleem, Muhammad Abdul Haq, Syed Baqir Shyum Naqvi, Muhammad Abid Husnain, Sajjad Haider Naqvi
Abstract:
The objective of the present study was: a) to investigate the antimicrobial activity of honey samples of different floral sources of Pakistan, b) to recover the phenolic acids in them as a possible contributing factor of antimicrobial activity. Six honey samples from different floral sources, namely: Trachysperm copticum, Acacia species, Helianthus annuus, Carissa opaca, Zizyphus and Magnifera indica were used. The antimicrobial activity was investigated by the disc diffusion method against eight freshly isolated clinical isolates (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans). Antimicrobial activity of honey was compared with five commercial antibiotics, namely: doxycycline (DO-30ug/mL), oxytetracycline (OT-30ug/mL), clarithromycin (CLR–15ug/mL), moxifloxacin (MXF-5ug/mL) and nystatin (NT – 100 UT). The fractions responsible for antimicrobial activity were extracted using ethyl acetate. Solid phase extraction (SPE) was used to recover the phenolic acids of honey samples. Identification was carried out via High-Performance Liquid Chromatography (HPLC). The results indicated that antimicrobial activity was present in all honey samples and found comparable to the antibiotics used in the study. In the microbiological assay, the ethyl acetate honey extract was found to exhibit a very promising antimicrobial activity against all the microorganisms tested, indicating the existence of phenolic compounds. Six phenolic acids, namely: gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids were identified besides some unknown substance by HPLC. In conclusion, Pakistani honey samples showed a broad spectrum antibacterial and promising antifungal activity. Identification of six different phenolic acids showed that Pakistani honey samples are rich sources of phenolic compounds that could be the contributing factor of antimicrobial activity.Keywords: Pakistani honey, antimicrobial activity, Phenolic acids eg.gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids
Procedia PDF Downloads 54910 Microbial Load, Prevalence and Antibiotic Resistance of Microflora Isolated from the Ghanaian Paper Currency Note: A Potential Health Threat
Authors: Simon Nyarko
Abstract:
This study examined the microbial flora contamination of the Ghanaian paper currency notes and antibiotic resistance in Ejura Municipal, Ashanti Region, Ghana. This is a descriptive cross-sectional study designed to assess the profile of microflora contamination of the Ghanaian paper currency notes and antibiotic-resistant in the Ejura Municipality. The research was conducted in Ejura, a town in the Ejura Sekyeredumase Municipal of the Ashanti region of Ghana. 70 paper currency notes which were freshly collected from the bank, consisting of 15 pieces of GH ¢1, GH ¢2, and GH ¢5, 10 pieces of GH ¢10 and GH ¢20, and 5 pieces of GH ¢50, were randomly sampled from people by exchanging their money in usage with those freshly secured from the bank. The surfaces of each GH¢ note were gently swabbed and sent to the lab immediately in sterile Zip Bags and sealed, and tenfold serial dilution was inoculated on plate count agar (PCA), MacConkey agar (MCA), mannitol salt agar (MSA), and deoxycholate citrate agar (DCA). For bacterial identification, the study used appropriate laboratory and biochemical tests. The data was analyzed using SPSS-IBM version 20.0. It was found that 95.2 % of the 70 GH¢ notes tested positive for one or more bacterial isolates. On each GH¢ note, mean counts on PCA ranged from 3.0 cfu/ml ×105 to 4.8 cfu/ml ×105. Of 124 bacteria isolated. 36 (29.03 %), 32 (25.81%), 16 (12.90 %), 20 (16.13%), 13 (10.48 %), and 7 (5.66 %) were from GH¢1, GH¢2, GH¢10, GH¢5, GH¢20, and GH¢50, respectively. Bacterial isolates were Escherichia coli (25.81%), Staphylococcus aureus (18.55%), coagulase-negative Staphylococcus (15.32%), Klebsiella species (12.10%), Salmonella species (9.68%), Shigella species (8.06%), Pseudomonas aeruginosa (7.26%), and Proteus species (3.23%). Meat shops, commercial drivers, canteens, grocery stores, and vegetable shops contributed 25.81 %, 20.16 %, 19.35 %, 17.74 %, and 16.94 % of GH¢ notes, respectively. There was 100% resistance of the isolates to Erythromycin (ERY), and Cotrimoxazole (COT). Amikacin (AMK) was the most effective among the antibiotics as 75% of the isolates were susceptible to it. This study has demonstrated that the Ghanaian paper currency notes are heavily contaminated with potentially pathogenic bacteria that are highly resistant to the most widely used antibiotics and are a threat to public health.Keywords: microflora, antibiotic resistance, staphylococcus aureus, culture media, multi-drug resistance
Procedia PDF Downloads 1079 Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf
Authors: H. Alijani, M. Jabari, S. Matroodi, H. Zolqarnein, A. Sharafi, I. Zamani
Abstract:
Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities.Keywords: antibacterial activity, antifungal activity, marine actinomycetes, Persian Gulf
Procedia PDF Downloads 2978 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2557 Microbiological Profile of UTI along with Their Antibiotic Sensitivity Pattern with Special Reference to Nitrofurantoin
Authors: Rupinder Bakshi, Geeta Walia, Anita Gupta
Abstract:
Introduction: Urinary tract infections (UTI) are considered to be one of the most common bacterial infections with an estimated annual global incidence of 150 million. Antimicrobial drug resistance is one of the major threats due to widespread usage of uncontrolled antibiotics. Materials and Methods: A total number of 9149 urine samples were collected from R.H Patiala and processed in the Department of Microbiology G.M.C Patiala. Urine samples were inoculated on MacConkey’s and blood agar plates by using calibrated loop delivering 0.001 ml of sample and incubated at 37 °C for 24 hrs. The organisms were identified by colony characters, gram’s staining and biochemical reactions. Antimicrobial susceptibility of the isolates was determined against various antimicrobial agents (Hi – Media Mumbai India) by Kirby-Bauer disk diffusion method on Muller Hinton agar plates. Results: Maximum patients were in the age group of 21-30 yrs followed by 31-40 yrs. Males (34%) are less prone to urinary tract infections than females (66%). Out of 9149 urine sample, the culture was positive in 25% (2290) samples. Esch. coli was the most common isolate 60.3% (n = 1378) followed by Klebsiella pneumoniae 13.5% (n = 310), Proteus spp. 9% (n = 209), Staphylococcus aureus 7.6 % (n = 173), Pseudomonas aeruginosa 3.7% (n = 84), Citrobacter spp. 3.1 % (70), Staphylococcus saprophyticus 1.8 % (n = 142), Enterococcus faecalis 0.8%(n=19) and Acinetobacter spp. 0.2%(n=5). Gram negative isolates showed higher sensitivity towards, Piperacillin +Tazobactum (67%), Amikacin (80%), Nitrofurantoin (82%), Aztreonam (100%), Imipenem (100%) and Meropenam (100%) while gram positive showed good response towards Netilmicin (69%), Nitrofurantoin (79%), Linezolid (98%), Vancomycin (100%) and Teicoplanin (100%). 465 (23%) isolates were resistant to Penicillins, 1st generation and 2nd generation Cehalosporins which were further tested by double disk approximation test and combined disk method for ESBL production. Out of 465 isolates, 375 were ESBLs consisting of n 264 (70.6%) Esch.coli and 111 (29.4%) Klebsiella pneumoniae. Susceptibility of ESBL producers to Imipenem, Nitrofurantoin and Amikacin were found to be 100%, 76%, and 75% respectively. Conclusion: Uropathogens are increasingly showing resistance to many antibiotics making empiric management of outpatients UTIs challenging. Ampicillin, Cotrimoxazole, and Ciprofloxacin should not be used in empiric treatment. Nitrofurantoin could be used in lower urinary tract infection. Knowledge of uropathogens and their antimicrobial susceptibility pattern in a geographical region will help inappropriate and judicious antibiotic usage in a health care setup.Keywords: Urinary Tract Infection, UTI, antibiotic susceptibility pattern, ESBL
Procedia PDF Downloads 3446 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals
Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama
Abstract:
Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram
Procedia PDF Downloads 4465 Neonatal Sepsis in Dogs Attend in Veterinary Hospital of the Sao Paulo State University, Botucatu, Brazil – Incidence, Clinical Aspects and Mortality
Authors: Maria Lucia G. Lourenco, Keylla H. N. P. Pereira, Vivane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
Neonatal sepsis is a systemic response to the acute generalized infection caused by one or more bacterial agents, representing the main infectious cause of neonatal mortality in dogs during the first three weeks of life. This study aims to describe the incidence of sepsis in neonate dogs, as well as the main clinical signs and mortality rates. The study included 735 neonates admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, between January 2018 and November 2019. Seven hundred thirty-five neonates, 14% (98/703) presented neonatal sepsis. The main sources of infection for the neonates were intrauterine (72.5%, 71/98), lactogenic (13.2%, 13/98), umbilical (5.1%, 5/98) and unidentified sources (9.2%, 9/98). The main non-specific clinical signs observed in the newborns were weakness, depression, impaired or absent reflexes, hypothermia, hypoglycemia, dehydration, reduced muscle tonus and diarrhea. The newborns also manifested clinical signs of severe infection, such as hyperemia in the abdominal and anal regions, omphalitis, hematuria, abdomen and extremities with purplish-blue coloration necrosing injuries in the pads, bradycardia, dyspnea, epistaxis, hypotension and evolution to septic shock. Infections acquired during intrauterine life led to the onset of the clinical signs at the time of birth, with fast evolution during the first hours of life. On the other hand, infections acquired via milk or umbilical cord presented clinical signs later. The total mortality rate was 5.4% (38/703) and the mortality rate among the neonates with sepsis was 38.7% (38/98). The early mortality rate (0 to 2 days) accounted for 86.9% (33/38) and the late mortality rate (3 to 30 days) for 13.1% (5/38) of the deaths among the newborns with sepsis. The main bacterial agents observed were Staphylococcus spp., Streptococcus spp., Proteus spp. Mannheimia spp. and Escherichia coli. Neonatal sepsis evolves quickly and may lead to high mortality in a litter. The prognosis is usually favorable if the diagnosis is reached early and the antibiotic therapy instituted as soon as possible, even before the results of blood cultures and antibiograms. The therapeutic recommendations should meet the special physiological conditions of a neonate in terms of metabolism and excretion of medication. Therefore, it is of utmost importance that the veterinarian is knowledgeable regarding neonatology to provide effective intervention and improve the survival rates of these patients.Keywords: Neonatal infection , bacteria, puppies, newborn
Procedia PDF Downloads 1154 Therapeutic Challenges in Treatment of Adults Bacterial Meningitis Cases
Authors: Sadie Namani, Lindita Ajazaj, Arjeta Zogaj, Vera Berisha, Bahrije Halili, Luljeta Hasani, Ajete Aliu
Abstract:
Background: The outcome of bacterial meningitis is strongly related to the resistance of bacterial pathogens to the initial antimicrobial therapy. The objective of the study was to analyze the initial antimicrobial therapy, the resistance of meningeal pathogens and the outcome of adults bacterial meningitis cases. Materials/methods: This prospective study enrolled 46 adults older than 16 years of age, treated for bacterial meningitis during the years 2009 and 2010 at the infectious diseases clinic in Prishtinë. Patients are categorized into specific age groups: > 16-26 years of age (10 patients), > 26-60 years of age (25 patients) and > 60 years of age (11 patients). All p-values < 0.05 were considered statistically significant. Data were analyzed using Stata 7.1 and SPSS 13. Results: During the two year study period 46 patients (28 males) were treated for bacterial meningitis. 33 patients (72%) had a confirmed bacterial etiology; 13 meningococci, 11 pneumococci, 7 gram-negative bacilli (Ps. aeruginosa 2, Proteus sp. 2, Acinetobacter sp. 2 and Klebsiella sp. 1 case) and 2 staphylococci isolates were found. Neurological complications developed in 17 patients (37%) and the overall mortality rate was 13% (6 deaths). Neurological complications observed were: cerebral abscess (7/46; 15.2%), cerebral edema (4/46; 8.7%); haemiparesis (3/46; 6.5%); recurrent seizures (2/46; 4.3%), and single cases of thrombosis sinus cavernosus, facial nerve palsy and decerebration (1/46; 2.1%). The most common meningeal pathogens were meningococcus in the youngest age group, gram negative-bacilli in second age group and pneumococcus in eldery age group. Initial single-agent antibiotic therapy (ceftriaxone) was used in 17 patients (37%): in 60% of patients in the youngest age group and in 44% of cases in the second age group. 29 patients (63%) were treated with initial dual-agent antibiotic therapy; ceftriaxone in combination with vancomycin or ampicillin. Ceftriaxone and ampicillin were the most commonly used antibiotics for the initial empirical therapy in adults > 50 years of age. All adults > 60 years of age were treated with the initial dual-agent antibiotic therapy as in this age group was recorded the highest mortality rate (M=27%) and adverse outcome (64%). Resistance of pathogens to antimicrobics was recorded in cases caused by gram-negative bacilli and was associated with greater risk for developing neurological complications (p=0.09). None of the gram-negative bacilli were resistant to carbapenems; all were resistant to ampicillin while 5/7 isolates were resistant to cefalosporins. Resistance of meningococci and pneumococci to beta-lactams was not recorded. There were no statistical differences in the occurrence of neurological complications (p > 0.05), resistance of meningeal pathogens to antimicrobics (p > 0.05) and the inital antimicrobial therapy (one vs. two antibiotics) concerning group-ages in adults. Conclusions: The initial antibiotic therapy with ceftriaxone alone or in combination with vancomycin or ampicillin did not cover cases caused by gram-negative bacilli.Keywords: adults, bacterial meningitis, outcomes, therapy
Procedia PDF Downloads 1733 Spectrum of Bacteria Causing Oral and Maxillofacial Infections and Their Antibiotic Susceptibility among Patients Attending Muhimbili National Hospital
Authors: Sima E. Rugarabamu, Mecky I. Matee, Elison N. M. Simon
Abstract:
Background: In Tanzania bacteriological studies of etiological agents of oro-facial infections are very limited, and very few have investigated anaerobes. The aim of this study was to determine the spectrum of bacterial agents involved in oral and maxillofacial infections in patients attending Muhimbili National Hospital, Dar-es-salaam, Tanzania. Method: This was a hospital based descriptive cross-sectional study that was conducted in the Department of Oral and Maxillofacial Surgery of the Muhimbili National Hospital in Dar es Salaam, Tanzania from 1st January 2014 to 31st August 2014. Seventy (70) patients with various forms of oral and maxillofacial infections who were recruited for the study. The study participants were interviewed using a prepared questionnaire after getting their consent. Pus aspirate was cultured on Blood agar, Chocolate Agar, MacConkey agar and incubated aerobically at 37°C. Imported blood agar was used for anaerobic culture whereby they were incubated at 37°Cin anaerobic jars in an atmosphere of generated using commercial gas-generating kits in accordance with manufacturer’s instructions. Plates were incubated at 37°C for 24 hours (For aerobic culture and 48 hours for anaerobic cultures). Gram negative rods were identified using API 20E while all other isolates were identified by conventional biochemical tests. Antibiotic sensitivity testing for isolated aerobic and anaerobic bacteria was detected by the disk diffusion, agar dilution and E-test using routine and commercially available antibiotics used to treat oral facial infections. Results: This study comprised of 41 (58.5%) males and 29 (41.5%) females with a mean age of 32 years SD +/-15.1 and a range of 19 to 70 years. A total of 161 bacteria strains were isolated from specimens obtained from 70 patients which were an average of 2.3 isolates per patient. Of these 103 were aerobic organism and 58 were strict anaerobes. A complex mix of strict anaerobes and facultative anaerobes accounted for 87% of all infections.The most frequent aerobes isolated was streptococcus spp 70 (70%) followed by Staphylococcus spp 18 (18%). Other organisms such as Klebsiella spp 4 (4%), Proteus spp 5 (5%) and Pseudomonas spp 2 (2%) were also seen. The anaerobic group was dominated by Prevotella spp 25 (43%) followed by Peptostreptococcus spp 18 (31%); other isolates were Pseudomonas spp 2 (1%), black pigmented Pophyromonas spp 4 (5%), Fusobacterium spp 3 (3%) and Bacteroides spp 5 (8%). Majority of these organisms were sensitive to Amoxicillin (98%), Gentamycin (89%), and Ciprofloxacin (100%). A 40% resistance to metronidazole was observed in Bacteroides spp otherwise this drug and others displayed good activity against anaerobes. Conclusions: Oral and maxillofacial facial infections at Muhimbili National Hospital are mostly caused by streptococcus spp and Prevotella spp. Strict anaerobes accounted for 36% of all isolates. The profile of isolates should assist in selecting empiric therapy for infections of the oral and maxillofacial region. Inclusion of antimicrobial agents against anaerobic bacteria is highly recommended.Keywords: bacteria, oral and maxillofacial infections, antibiotic susceptibility, Tanzania
Procedia PDF Downloads 3312 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI
Procedia PDF Downloads 501 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection
Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi
Abstract:
The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora
Procedia PDF Downloads 104