Search results for: pricing system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17833

Search results for: pricing system

17773 Barriers to Competitive Tenders in Building Conservation Works

Authors: Yoke-Mui Lim, Yahaya Ahmad

Abstract:

Conservation works in Malaysia that is procured by public organisation usually follow the traditional approach where the works are tendered based on Bills of Quantities (BQ). One of the purposes of tendering is to enable the selection of a competent contractor that offers a competitive price. While competency of the contractors are assessed by their technical knowledge, experience and track records, the assessment of pricing will be dependent on the tender amount. However, the issue currently faced by the conservation works sector is the difficulty in assessing the competitiveness and reasonableness of the tender amount due to the high variance between the tenders amount. Thus, this paper discusses the factors that cause difficulty to the tenderers in pricing competitively in a bidding exercise for conservation tenders. Data on tendering is collected from interviews with conservation works contractors to gain in-depth understanding of the barriers faced in pricing tenders of conservation works. Findings from the study lent support to the contention that the variance of tender amount is very high amongst tenderers. The factors identified in the survey are the format of BQ, hidden works, experience and labour and material costs.

Keywords: building conservation, Malaysia, bill of quantities, tender

Procedia PDF Downloads 391
17772 Rate of Profit as a Pricing Benchmark in Islamic Banking to Create Financial Stability

Authors: Trisiladi Supriyanto

Abstract:

Although much research has been done on the pricing benchmark both in terms of fiqh or Islamic economic perspective, but no substitution for the concept of interest (rate of interest) up to now in the application of Islamic Banking because some of the jurists from the middle east even allow the use of a benchmark rate such as LIBOR (London Interbank Offered Rate) as a measure of Islamic financial asset prices, so in other words, they equate the concept of rate of interest with the concept of rate of profit, which is the core reason (raison detre) for the replacement of usury as instructed in the Quran. This study aims to find the concept of rate of profit on Islamic banking that can create economic justice and stability in Islamic Banking and Capital market. Rate of profit that creates economic justice and stability can be achieved through its role in maintaining the stability of the financial system in which there is an equitable distribution of income and wealth. To determine the role of the rate of profit as the basis of the sharing system implemented in the Islamic financial system, we can see the connection of rate of profit in creating financial stability, especially in the asset-liability management of financial institutions that generate a stable net margin or the rate of profit that is not affected by the ups and downs of the market risk factors including indirect effect on interest rates. Furthermore, Islamic financial stability can be seen from the role of the rate of profit on the stability of the Islamic financial assets that are measured from the Islamic financial asset price volatility in Islamic Bond Market in Capital Market.

Keywords: Rate of profit, economic justice, stability, equitable distribution of income, equitable distribution of wealth

Procedia PDF Downloads 403
17771 Understanding Consumption Planning Behaviors

Authors: Gaosheng Ju

Abstract:

Our empirical evidence supports a model of consumption planning behaviors with the following two characteristics. First, households formulate a rational consumption target based on their desired target, displaying a diminishing sensitivity to the discrepancy between them. Second, the established target is a reference point for their planned consumption. The diminishing sensitivity leads to opposite reactions in higher and lower quantiles of both consumption targets and consumption growth to changes in economic conditions. This phenomenon accounts for the perplexingly low correlation between consumption and other macroeconomic variables. Furthermore, the opposing movements of consumption targets offer new insights into consumption-based asset pricing.

Keywords: consumption planning, reference point, diminishing sensitivity, quantile regression, asset pricing puzzles

Procedia PDF Downloads 84
17770 Market Illiquidity and Pricing Errors in the Term Structure of CDS

Authors: Lidia Sanchis-Marco, Antonio Rubia, Pedro Serrano

Abstract:

This paper studies the informational content of pricing errors in the term structure of sovereign CDS spreads. The residuals from a non-arbitrage model are employed to construct a Price discrepancy estimate, or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests that arbitrage capital flows exit the marketplace during time of distress, and this consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the most common CDS pricing models employed in the industry.

Keywords: credit default swaps, noise measure, illiquidity, capital arbitrage

Procedia PDF Downloads 570
17769 Addressing the Water Shortage in Beijing: Increasing Water Use Efficiency in Domestic Sector

Authors: Chenhong Peng

Abstract:

Beijing, the capital city of China, is running out of water. The water resource per capita in Beijing is only 106 cubic meter, accounts for 5% of the country’s average level and less than 2% of the world average level. The tension between water supply and demand is extremely serious. For one hand, the surface and ground water have been over-exploited during the last decades; for the other hand, water demand keep increasing as the result of population and economic growth. There is a massive gap between water supply and demand. This paper will focus on addressing the water shortage in Beijing city by increasing water use efficiency in domestic sector. First, we will emphasize on the changing structure of water supply and demand in Beijing under the economic development and restructure during the last decade. Second, by analyzing the water use efficiency in agriculture, industry and domestic sectors in Beijing, we identify that the key determinant for addressing the water crisis is to increase the water use efficiency in domestic sector. Third, this article will explore the two primary causes for the water use inefficiency in Beijing: The ineffective water pricing policy and the poor water education and communication policy. Finally, policy recommendation will offered to improve the water use efficiency in domestic sector by making and implementing an effective water pricing policy and people-engaged water education and communication policy.

Keywords: Beijing, water use efficiency, domestic sector, water pricing policy, water education policy

Procedia PDF Downloads 542
17768 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 23
17767 Cuckoo Search Optimization for Black Scholes Option Pricing

Authors: Manas Shah

Abstract:

Black Scholes option pricing model is one of the most important concepts in modern world of computational finance. However, its practical use can be challenging as one of the input parameters must be estimated; implied volatility of the underlying security. The more precisely these values are estimated, the more accurate their corresponding estimates of theoretical option prices would be. Here, we present a novel model based on Cuckoo Search Optimization (CS) which finds more precise estimates of implied volatility than Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

Keywords: black scholes model, cuckoo search optimization, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 453
17766 The Use of Electronic Shelf Labels in the Retail Food Sector

Authors: Brent McKenzie, Victoria Taylor

Abstract:

The use of QR (Quick Response Codes) codes for customer scanning with mobile phones is a rapidly growing trend. The QR code can provide the consumer with product information, user guides, product use, competitive pricing, etc. One sector for QR use has been in retail, through the use of Electronic Shelf Labeling (henceforth, ESL). In Europe, the use of ESL for pricing has been in practice for a number of years but continues to lag in acceptance in North America. Stated concerns include costs as a key constraint, but there is also evidence that consumer acceptance represents a limitation as well. The purpose of this study is to present the findings of a consumer based study to gage the impact on their use in the retail food sector.

Keywords: electronic price labels, consumer behaviour, grocery shopping, mixed methods research

Procedia PDF Downloads 339
17765 A Multivariate Analysis of Patent Price Variations in the Emerging United States Patent Auction Market: Role of Patent, Seller, and Bundling Related Characteristics

Authors: Pratheeba Subramanian, Anjula Gurtoo, Mary Mathew

Abstract:

Transaction of patents in emerging patent markets is gaining momentum. Pricing patents for a transaction say patent sale remains a challenge. Patents vary in their pricing with some patents fetching higher prices than others. Sale of patents in portfolios further complicates pricing with multiple patents playing a role in pricing a bundle. In this paper, a set of 138 US patents sold individually as single invention lots and 462 US patents sold in bundles of 120 portfolios are investigated to understand the dynamics of selling prices of singletons and portfolios and their determinants. Firstly, price variations when patents are sold individually as singletons and portfolios are studied. Multivariate statistical techniques are used for analysis both at the lot level as well as at the individual patent level. The results show portfolios fetching higher prices than singletons at the lot level. However, at the individual patent level singletons show higher prices than per patent price of individual patent members within the portfolio. Secondly, to understand the price determinants, the effect of patent, seller, and bundling related characteristics on selling prices is studied separately for singletons and portfolios. The results show differences in the set of characteristics determining prices of singletons and portfolios. Selling prices of singletons are found to be dependent on the patent related characteristics, unlike portfolios whose prices are found to be dependent on all three aspects – patent, seller, and bundling. The specific patent, seller and bundling characteristics influencing selling price are discussed along with the implications.

Keywords: auction, patents, portfolio bundling, seller type, selling price, singleton

Procedia PDF Downloads 329
17764 Inflation Tail Risks and Asset Pricing

Authors: Sebastian Luber

Abstract:

The study demonstrates that tail inflation risk is priced into stock returns and credit spreads. This holds true even when controlling for current and historical inflation moments. The analysis employs inflation caps and floors to obtain the distribution of future inflation under the risk-neutral measure. Credit spreads decrease as the mean and median of future inflation rise, but they respond positively to tail risks. Conversely, stocks serve as a robust hedge against future inflation. Stock returns increase with a higher mean and median of future inflation and rising inflationary tail risk, while they decrease with rising deflationary tail risk.

Keywords: asset pricing, inflation expectations, tail risk, stocks, inflation derivatives, credit

Procedia PDF Downloads 25
17763 Hedonic Pricing Model of Parboiled Rice

Authors: Roengchai Tansuchat, Wassanai Wattanutchariya, Aree Wiboonpongse

Abstract:

Parboiled rice is one of the most important food grains and classified in cereal and cereal product. In 2015, parboiled rice was traded more than 14.34 % of total rice trade. The major parboiled rice export countries are Thailand and India, while many countries in Africa and the Middle East such as Nigeria, South Africa, United Arab Emirates, and Saudi Arabia, are parboiled rice import countries. In the global rice market, parboiled rice pricing differs from white rice pricing because parboiled rice is semi-processing product, (soaking, steaming and drying) which affects to their color and texture. Therefore, parboiled rice export pricing does not depend only on the trade volume, length of grain, and percentage of broken rice or purity but also depend on their rice seed attributes such as color, whiteness, consistency of color and whiteness, and their texture. In addition, the parboiled rice price may depend on the country of origin, and other attributes, such as certification mark, label, packaging, and sales locations. The objectives of this paper are to study the attributes of parboiled rice sold in different countries and to evaluate the relationship between parboiled rice price in different countries and their attributes by using hedonic pricing model. These results are useful for product development, and marketing strategies development. The 141 samples of parboiled rice were collected from 5 major parboiled rice consumption countries, namely Nigeria, South Africa, Saudi Arabia, United Arab Emirates and Spain. The physicochemical properties and optical properties, namely size and shape of seed, colour (L*, a*, and b*), parboiled rice texture (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness), nutrition (moisture, protein, carbohydrate, fat, and ash), amylose, package, country of origin, label are considered as explanatory variables. The results from parboiled rice analysis revealed that most of samples are classified as long grain and slender. The highest average whiteness value is the parboiled rice sold in South Africa. The amylose value analysis shows that most of parboiled rice is non-glutinous rice, classified in intermediate amylose content range, and the maximum value was found in United Arab Emirates. The hedonic pricing model showed that size and shape are the key factors to determine parboiled rice price statistically significant. In parts of colour, brightness value (L*) and red-green value (a*) are statistically significant, but the yellow-blue value (b*) is insignificant. In addition, the texture attributes that significantly affect to the parboiled rice price are hardness, adhesiveness, cohesiveness, and gumminess. The findings could help both parboiled rice miller, exporter and retailers formulate better production and marketing strategies by focusing on these attributes.

Keywords: hedonic pricing model, optical properties, parboiled rice, physicochemical properties

Procedia PDF Downloads 333
17762 Research on the Construction of Fair Use of Copyright and Compensation System for Artificial Intelligence Creation

Authors: Shen Xiaoyun

Abstract:

The AI-generated works must intersect with the right holder’s work, thus having a certain impact on the rights and interests of the right holder’s work. The law needs to explore and improve the regulation of the fair use of AI creations and build a compensation system to adapt to the development of the times. The development of AI technology has brought about problems such as the unclear relationship between fair use and infringement of copyright, the unclear general terms and conditions of application, and the incomplete criteria for judging at different stages. Through different theoretical methods, the legitimacy of the rational use of the system can be demonstrated. The compensation standard for fair use of copyright in AI creation can refer to the market pricing of the right holder's work, and the compensation can construct a formula for the amount of damages for AI copyright infringement, and construct the compensation standard based on the main factors affecting the market value of the work, so as to provide a reference for the construction of a compensation system for fair use of works generated by AI.

Keywords: artificial intelligence, creative acts, fair use of copyright, copyright compensation system

Procedia PDF Downloads 28
17761 A Generalization of Option Pricing with Discrete Dividends to Markets with Daily Price Limits

Authors: Jiahau Guo, Yihe Zhang

Abstract:

This paper proposes solutions for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day one and use the framework of Haug et al. (2003) to value European options on stocks paying discrete dividends. Next, we adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for American options and further employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed methods is verified by simulations.

Keywords: daily price limit, discrete dividend, early exercise, fast Fourier transform, multi-day density function, Richardson extrapolation

Procedia PDF Downloads 166
17760 Competitivity in Procurement Multi-Unit Discrete Clock Auctions: An Experimental Investigation

Authors: Despina Yiakoumi, Agathe Rouaix

Abstract:

Laboratory experiments were run to investigate the impact of different design characteristics of the auctions, which have been implemented to procure capacity in the UK’s reformed electricity markets. The experiment studies competition among bidders in procurement multi-unit discrete descending clock auctions under different feedback policies and pricing rules. Theory indicates that feedback policy in combination with the two common pricing rules; last-accepted bid (LAB) and first-rejected bid (FRB), could affect significantly the auction outcome. Two information feedback policies regarding the bidding prices of the participants are considered; with feedback and without feedback. With feedback, after each round participants are informed of the number of items still in the auction and without feedback, after each round participants have no information about the aggregate supply. Under LAB, winning bidders receive the amount of the highest successful bid and under the FRB the winning bidders receive the lowest unsuccessful bid. Based on the theoretical predictions of the alternative auction designs, it was decided to run three treatments. First treatment considers LAB with feedback; second treatment studies LAB without feedback; third treatment investigates FRB without feedback. Theoretical predictions of the game showed that under FRB, the alternative feedback policies are indifferent to the auction outcome. Preliminary results indicate that LAB with feedback and FRB without feedback achieve on average higher clearing prices in comparison to the LAB treatment without feedback. However, the clearing prices under LAB with feedback and FRB without feedback are on average lower compared to the theoretical predictions. Although under LAB without feedback theory predicts the clearing price will drop to the competitive equilibrium, experimental results indicate that participants could still engage in cooperative behavior and drive up the price of the auction. It is showed, both theoretically and experimentally, that the pricing rules and the feedback policy, affect the bidding competitiveness of the auction by providing opportunities to participants to engage in cooperative behavior and exercise market power. LAB without feedback seems to be less vulnerable to market power opportunities compared to the alternative auction designs. This could be an argument for the use of LAB pricing rule in combination with limited feedback in the UK capacity market in an attempt to improve affordability for consumers.

Keywords: descending clock auctions, experiments, feedback policy, market design, multi-unit auctions, pricing rules, procurement auctions

Procedia PDF Downloads 300
17759 Hybrid Multipath Congestion Control

Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang

Abstract:

Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.

Keywords: network, TCP, WiFi, cellular, congestion control

Procedia PDF Downloads 720
17758 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths

Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan

Abstract:

It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.

Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages

Procedia PDF Downloads 268
17757 Economic Valuation of Environmental Services Sustained by Flamboyant Park in Goiania-Go, Brazil

Authors: Brenda R. Berca, Jessica S. Vieira, Lucas G. Candido, Matheus C. Ferreira, Paulo S. A. Lopes Filho, Rafaella O. Baracho

Abstract:

This study aims to estimate the economic value environmental services sustained by Flamboyant Lourival Louza Municipal Park in Goiânia, Goiás, Brazil. The Flamboyant Park is one of the most relevant urban parks, and it is located near a stadium, a shopping center, and two supercenters. In order to define the methods used for the valuation of Flamboyant Park, the first step was carrying out bibliographical research with the view to better understand which method is most feasible to valuate the Park. Thus, the following direct methods were selected: travel cost, hedonic pricing, and contingent valuation. In addition, an indirect method (replacement cost) was applied at Flamboyant Park. The second step was creating and applying two surveys. The first survey aimed at the visitors of the park, addressing socio-economic issues, the use of the Park, as well as its importance and the willingness the visitors, had to pay for its existence. The second survey was destined to the existing trade in the Park, in order to collect data regarding the profits obtained by them. In the end, the characterization of the profile of the visitors and the application of the methods of contingent valuation, travel cost, replacement cost and hedonic pricing were obtained, thus monetarily valuing the various ecosystem services sustained by the park. Some services were not valued due to difficulties encountered during the process.

Keywords: contingent valuation, ecosystem services, economic environmental valuation, hedonic pricing, travel cost

Procedia PDF Downloads 229
17756 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 78
17755 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model

Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga

Abstract:

The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.

Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives

Procedia PDF Downloads 115
17754 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 161
17753 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 570
17752 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 379
17751 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 254
17750 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment

Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano

Abstract:

Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.

Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power

Procedia PDF Downloads 102
17749 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
17748 Best Responses for the Dynamic Model of Hotel Room Rate

Authors: Xuan Tran

Abstract:

The purpose of this paper is to present a comprehensive dynamic model for pricing strategies in the hotel competition to find a win-win situation for the competitive set. By utilizing the Cobb-Douglas utility model, the study establishes room rates by analyzing the price elasticity of demand across a competitive set of four hotels, with a focus on occupancy rates. To further enhance the analysis, game theory is applied to identify the best response for each competitive party, which illustrates the optimal pricing strategy for each hotel in the competitive landscape. This approach offers valuable insights into how hotels can strategically adjust their room rates in response to market conditions and competitor actions. The primary contributions of this research include as follows: (1) advantages for both individual hotels and the broader competitive hotel market, (2) benefits for hotel management overseeing multiple brands, and (3) positive impacts on the local community.

Keywords: dynamic model, game theory, best response, Cobb-Douglas

Procedia PDF Downloads 24
17747 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 77
17746 Pricing European Continuous-Installment Options under Regime-Switching Models

Authors: Saghar Heidari

Abstract:

In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.

Keywords: continuous-installment option, European option, regime-switching model, finite element method

Procedia PDF Downloads 140
17745 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges

Authors: Seyran Naghdi

Abstract:

Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.

Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis

Procedia PDF Downloads 165
17744 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing

Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea

Abstract:

Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?

Keywords: Bjerksund and Stensland approximations, computational analysis, finance, options pricing, numerical methods

Procedia PDF Downloads 458