Search results for: price premium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1183

Search results for: price premium

1123 Impact of Construction Risk Factors into Actual Construction Price in PPP Projects

Authors: Saleh Alzahrani, Halim Boussabaine

Abstract:

The majority of Public Private Partnership (PPP) are developed based on the rationale that the design, construction, operation, and financing of a public project is to be awarded to a private party within a single contractual framework. PPP project risks normally include the development and construction of a new asset as well as its operation for decades. Undoubtedly the most serious consequences of risks during the construction period are price and time overruns. These events are amongst the most broadly used scenarios in value for money analysis risks. The sources of risk change over the life cycle of a PPP project. In traditional procurement, the public sector normally has to cover all price distress from these risks. At least there is plenty evidence to suggest that price distress is a norm in some of the projects that are delivered under traditional procurement. This paper will find the impact of construction risk factors into actual construction price into PPP projects. The paper will present a brief literature review on PPP risk pricing strategies, and then using system dynamics (SD) to analyses of the risks associated with the estimated project price. Based on the finding from these analyses a risk pricing association model is presented and discussed. The paper concludes with thoughts for future research.

Keywords: Public Private Partnership (PPP), Risk, Risk Pricing, System Dynamics (SD), construction price

Procedia PDF Downloads 567
1122 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
1121 The Effect of the Enterprises Being Classified as Socially Responsible on Their Stock Returns

Authors: Chih-Hsiang Chang, Chia-Ching Tsai

Abstract:

The aim of this study is to examine the stock price effect of the enterprises being classified as socially responsible. We explore the stock price response to the announcement that an enterprise is selected for the Taiwan Corporate Sustainability Awards. Empirical results indicate that the announcements of the Taiwan Corporate Sustainability Awards provide useful informational content to stock market. We find the evidence of insignificantly positive short-term and significantly positive long-term price reaction to the enterprises being classified as socially responsible. This study concludes that investors in the Taiwan stock market tend to view an enterprise being selected for the Taiwan Corporate Sustainability Awards as one with superior quality and long-term price potential.

Keywords: corporate social responsibility, stock price effect, Taiwan stock market, investments

Procedia PDF Downloads 154
1120 Objective vs. Perceived Quality in the Cereal Industry

Authors: Albena Ivanova, Jill Kurp, Austin Hampe

Abstract:

Cereal products in the US contain rich information on the front of the package (FOP) as well as point-of-purchase (POP) summaries provided by the store. These summaries frequently are confusing and misleading to the consumer. This study explores the relationship between perceived quality, objective quality, price, and value in the cold cereal industry. A total of 270 cold cereal products were analyzed and the price, quality and value for different summaries were compared using ANOVA tests. The results provide evidence that the United States Department of Agriculture Organic FOP/POP are related to higher objective quality, higher price, but not to a higher value. Whole grain FOP/POP related to a higher objective quality, lower or similar price, and higher value. Heart-healthy POP related to higher objective quality, similar price, and higher value. Gluten-free FOP/POP related to lower objective quality, higher price, and lower value. Kid's cereals were of lower objective quality, same price, and lower value compared to family and adult markets. The findings point to a disturbing tendency of companies to continue to produce lower quality products for the kids’ market, pricing them the same as high-quality products. The paper outlines strategies that marketers and policymakers can utilize to contribute to the increased objective quality and value of breakfast cereal products in the United States.

Keywords: cereals, certifications, front-of-package claims, consumer health.

Procedia PDF Downloads 125
1119 Employer Learning, Statistical Discrimination and University Prestige

Authors: Paola Bordon, Breno Braga

Abstract:

This paper investigates whether firms use university prestige to statistically discriminate among college graduates. The test is based on the employer learning literature which suggests that if firms use a characteristic for statistical discrimination, this variable should become less important for earnings as a worker gains labor market experience. In this framework, we use a regression discontinuity design to estimate a 19% wage premium for recent graduates of two of the most selective universities in Chile. However, we find that this premium decreases by 3 percentage points per year of labor market experience. These results suggest that employers use college selectivity as a signal of workers' quality when they leave school. However, as workers reveal their productivity throughout their careers, they become rewarded based on their true quality rather than the prestige of their college.

Keywords: employer learning, statistical discrimination, college returns, college selectivity

Procedia PDF Downloads 581
1118 Price Setting and the Role of Accounting Information

Authors: Chris Durden, Peter Lane

Abstract:

Cost accounting information potentially plays an important role in price setting. According to prior research fixed and variable cost information often is a key influence on pricing decisions. The literature highlights the benefits of applying systematic costing systems for enhanced price setting processes. This paper explores how costing systems are used for pricing decisions in the tourism and hospitality industry relative to other sources of price setting information. Pricing based on full cost information was found to have relatively greater importance and short-term survival and customer oriented objectives were found to be the more important pricing objectives. This paper contributes to the literature by providing a recent analysis of accounting’s role in price setting within the tourism and hospitality industry.

Keywords: cost accounting systems, pricing decisions, cost-plus pricing, market pricing, tourism industry

Procedia PDF Downloads 387
1117 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa

Authors: Christopher I. Ifeacho, Adeleke Omolade

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship

Procedia PDF Downloads 100
1116 Value Relevance of Good Governance: A Study on Listed Companies in the UK

Authors: Ashiqul Amin Khan, Mohsin Ul Amin Khan

Abstract:

The aim of this research is to find the relationship between good governance and shareholder wealth maximisation. The concept of good governance has become more objective in nature over time through various regulations, professionalisation, and practices. This has led to a number of methods for scoring and ranking corporate governance practices. Since shareholder wealth maximisation remains the key corporate goal for managers and governors alike, the effect of good governance in increasing the value of corporations is commented to be an important aspect. In measuring the value relevance of good governance, statistical measures of various yields of listed companies in the UK have been used in this research. Yields reflect required returns on investments from different investment tenets. Historical yields, calculated using historical fundamental data of such companies, reflect expected yields to a great extent. These yields, in turn, reflect the expected risk premium and growth associated with the stocks of the companies. Using fundamental data, the yields have been adjusted to reflect the risk premium required by the investors along various value paradigms. Good governance should naturally lead to lower required risk premium since good corporate governance provided assurance to the investors in terms of sustainability of future performance and desired financial conduct. This, in turn, increases the wealth of stockholders. The findings of this research confirm such nature of the relationship between good governance and value of the company in the long run.

Keywords: corporate governance, good governance practices, short-termism, shareholder value relevance, wealth maximisation, yield

Procedia PDF Downloads 366
1115 Split-Share Structure Reform and Statutory Audit Fees in China

Authors: Hsiao-Wen Wang

Abstract:

The split-share structure reform in China represents one of the most significant milestones in the evolution of the capital market. With the goal of converting non-tradable shares into tradable shares, the reform laid the foundation and supported the development of full-scale privatization. This study explores China’s split-share structure reform and its impact on statutory audit fees. This study finds that auditors earn a significant statutory audit fee premium after the split-share structure reform. The Big 4 auditors who provide better audit quality receive higher statutory audit fee premium than non-Big 4 auditors after the share reform, which is attributable to their brand reputation, rather than the relative market dominance.

Keywords: chinese split-share structure reform, statutory audit fees, big-4 auditors, corporate governance

Procedia PDF Downloads 399
1114 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa

Authors: Christopher Ikechukwu Ifeacho

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability

Procedia PDF Downloads 25
1113 Modernization of the Economic Price Adjustment Software

Authors: Roger L. Goodwin

Abstract:

The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. In mid to late 1990, much research went into changes to the CPI by a Congressional Advisory Committee. One thing can be said from the research is that, aside from there are alternative estimators for the CPI; any fundamental change to the CPI will affect many government programs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for long-term contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.

Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures

Procedia PDF Downloads 319
1112 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
1111 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 232
1110 A Comparative Study of Dividend Policy and Share Price across the South Asian Countries

Authors: Anwar Hussain, Ahmed Imran, Farida Faisal, Fatima Sultana

Abstract:

The present research evaluates a comparative assessment of dividend policy and share price across the South Asian countries including Pakistan, India and Sri-Lanka over the period of 2010 to 2014. Academic writers found that dividend policy and share price relationship is not same in south Asian market due to different reasons. Moreover, Panel Models used = for the evaluation of current study. In addition, Redundant fixed effect Likelihood and Hausman test used for determine of Common, Fixed and Random effect model. Therefore Indian market dividend policies play a fundamental role and significant impact on Market Share Prices. Although, present research found that different as compared to previous study that dividend policy have no impact on share price in Sri-Lanka and Pakistan.

Keywords: dividend policy, share price, South Asian countries, panel data analysis, theories and parameters of dividend

Procedia PDF Downloads 324
1109 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 407
1108 Value Relevance of Accounting Information: Empirical Evidence from China

Authors: Ying Guo, Miaochan Li, David Yang, Xiao-Yan Li

Abstract:

This paper examines the relevance of accounting information to stock prices at different periods using manufacturing companies listed in China’s Growth Enterprise Market (GEM). We find that both the average stock price at fiscal year-end and the average stock price one month after fiscal year-end are more relevant to the accounting information than the closing stock price four months after fiscal year-end. This implies that Chinese stock markets react before the public disclosure of accounting information, which may be due to information leak before official announcements. Our findings confirm that accounting information is relevant to stock prices for Chinese listed manufacturing companies, which is a critical question to answer for investors who have interest in Chinese companies.

Keywords: accounting information, response time, value relevance, stock price

Procedia PDF Downloads 97
1107 Calculate Consumer Surplus and Producer Surplus Using Integration

Authors: Bojan Radisic, Katarina Stavlic

Abstract:

The paper describes two economics terms consumer surplus and producer surplus using the definite integrals (the Riemann integral). The consumer surplus is the difference between what consumers are willing to pay and actual price. The producer surplus is the difference between what producers selling at the current price, rather than at the price they would have been are willing to accept. Using the definite integrals describe terms and mathematical formulas of the consumer surplus and the producer surplus and will be applied to the numerical examples.

Keywords: consumer surplus, producer surplus, definite integral, integration

Procedia PDF Downloads 592
1106 Unravelling Cross-Commodity Price Transmission Dynamics between Coastal and Freshwater Fish Species in Bangladesh: A Structural VAR Analysis

Authors: Farhana Arefeen Mila, Luis Emilio Morales, Nam Hoang, Sujana Adapa, Garry Griffith

Abstract:

This study investigates the existence of price transmission asymmetries and imperfections among the coastal and freshwater fish species in Bangladesh. Using a Structural Vector Autoregression (SVAR) model, we explore how price changes in one fish species impact the prices of others in the retail market. Monthly data from the Department of Agricultural Marketing (DAM) covering the period from 2012 to 2023 was analyzed. Price series were detrended using the Hodrick-Prescott filter, and unit root tests confirmed stationarity after detrending. The findings indicate that there are significant interdependencies and asymmetries in price transmission, particularly the strong influence of Hilsha on the broader fish market. Hilsha’s price shocks generate immediate responses across other species, reflecting its cultural and economic importance. Silver Pomfret demonstrates some independence but is still affected by broader market fluctuations, particularly those involving Hilsha. Meanwhile, Rohu and Catla exhibit high interdependence, where price changes in one species closely impact the other, underscoring their substitutable nature in consumer preferences. These findings emphasize the need for joint interventions and market monitoring to stabilize prices effectively. Stakeholders are encouraged to monitor Hilsha’s market, consider coordinated interventions for Rohu and Catla, and establish data-sharing partnerships to enhance market stability. Additionally, promoting consumer awareness of price trends and sustainable practices can further support market resilience and long-term sustainability in the fisheries sector.

Keywords: price transmission, cross commodity, fish, Bangladesh, CCF, SVAR, IRF

Procedia PDF Downloads 15
1105 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices

Authors: Ioana Neamtu

Abstract:

This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.

Keywords: structural model, GMM estimation, system of equations, electricity market

Procedia PDF Downloads 437
1104 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 166
1103 Factors Affecting Consumers’ Willingness to Pay for Chicken Meat from Biosecure Farms

Authors: Veronica Sri Lestari, Asmuddin Natsir, Hasmida Karim, Ian Patrick

Abstract:

The research aimed at investigating the factors affecting consumers’ willingness to pay for chicken meat from biosecure farms. The research was conducted in Makassar City, South Sulawesi Province, Indonesia. Samples were taken using random sampling technique in two supermarkets namely Lotte Mart and Gelael. Total samples were 50 respondents which comprised the chicken meat consumers. To find out the consumers’ willingness to pay for chicken meat from the biosecure farms, the contingent valuation method was utilized. Data were collected through interviews and questionnaires. Probit Logistic was estimated to examine the factors affecting the consumers’ willingness to pay for at the premium price for chicken meat from the biosecure farms. The research indicates that the education and income affect significantly the consumers’ willingness to pay for chicken meat from the biosecure farms (P < 0.05). The results of the study will be beneficial for the policy makers, producers, consumers and those conducting research.

Keywords: biosecure, chicken, farms, consumer, willingness-to-pay

Procedia PDF Downloads 275
1102 Increasing National Health Insurance Scheme Enrolment in Ghana: Pro-Rata Insurance Premium Payment with Mobile Phone as the Answer

Authors: Joseph Marfo Boaheng, Daniel Ansong, Eugenia Amporfo

Abstract:

Health Insurance is proposed to provide financial protection against catastrophic health care cost arising from disease. Ghana has had a National Health Insurance Scheme (NHIS) since 2003 with the current enrolment/retention rate of 36%. The main goal of the scheme is to provide equity in the health sector as well as ensuring affordable health care for the poor. However, the current payment system is not flexible to attract significant proportion of the poor informal sector onto the scheme. Looking at the extensive use of mobiles in the Ghana where about 29,220,602.00 registered mobile phone lines are actively in used as of June 2014, paying health insurance premium through mobile phone could be feasible to attract larger proportion of the informal sector onto the scheme. Methodology: The quantitative cross-sectional survey was used to solicit the required information from 877 respondents living in Kumasi, the second capital city of Ghana. The magnitude of the effect of Pro-rata system (flexible payment terms) on NHIS enrollment rate was estimated with binary logistic regression model. Results: The odds for an individual to enroll onto NHIS with mobile phone increases about 2 times more when payment of insurance premium is on pro-rata basis ie. flexible payment terms (p=0.008, CI=1.212-3.565). Conclusion: The study advocates the National Health Insurance Authority consider this alternative payment system that has the potential of attracting a greater proportion of the informal sector to be enrolled or retained onto the scheme.

Keywords: enrollment, health insurance, mobile phone, pro-rata

Procedia PDF Downloads 399
1101 Perceived Quality of Regional Products in MS Region

Authors: M. Stoklasa, H. Starzyczna, K. Matusinska

Abstract:

This article deals with the perceived quality of regional products in the Moravian-Silesian region in the Czech Republic. Research was focused on finding out what do consumers perceive as a quality product and what characteristics make a quality product. The data were obtained by questionnaire survey and analysed by IBM SPSS. From the thousands of respondents the representative sample of 719 for MS region was created based on demographic factors of gender, age, education and income. The research analysis disclosed that consumers in MS region are still price oriented and that the preference of quality over price does not depend on regional brand knowledge.

Keywords: regional brands, quality products, characteristics of quality, quality over price

Procedia PDF Downloads 418
1100 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
1099 Optimal Price Points in Differential Pricing

Authors: Katerina Kormusheva

Abstract:

Pricing plays a pivotal role in the marketing discipline as it directly influences consumer perceptions, purchase decisions, and overall market positioning of a product or service. This paper seeks to expand current knowledge in the area of discriminatory and differential pricing, a main area of marketing research. The methodology includes developing a framework and a model for determining how many price points to implement in differential pricing. We focus on choosing the levels of differentiation, derive a function form of the model framework proposed, and lastly, test it empirically with data from a large-scale marketing pricing experiment of services in telecommunications.

Keywords: marketing, differential pricing, price points, optimization

Procedia PDF Downloads 93
1098 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis

Authors: Kawsar Ahmed, Hong Wang

Abstract:

The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.

Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation

Procedia PDF Downloads 114
1097 Impact of Exogenous Risk Factors into Actual Construction Price in PPP Projects

Authors: Saleh Alzahrani, Halim Boussabaine

Abstract:

Many of Public Private Partnership (PPP) are developed based on a public project is to be awarded to a private party within a one contractual framework. PPP project risks typically include the development and construction of a new asset as well as its operation. Certainly the most severe consequences of risks through the construction period are price and time overruns. These events are among the most generally used situation in value for money analysis risks. The sources of risk change during the time in PPP project. In traditional procurement, the public sector usually has to cover all prices suffering from these risks. At least there is plenty to suggest that price suffering is a norm in some of the projects that are delivered under traditional procurement. This paper will find the impact of exogenous risk factors into actual construction price into PPP projects. The paper will present a brief literature review on PPP risk pricing strategies and then using system dynamics (SD) to analyses of the risks associated with the estimated project price. Based on the finding from these analyses a risk pricing association model is presented and discussed. The paper concludes with thoughts for future research.

Keywords: public private partnership (PPP), risk, risk pricing, system dynamics (SD)

Procedia PDF Downloads 558
1096 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 172
1095 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: deep learning, artificial neural networks, energy price forecasting, turkey

Procedia PDF Downloads 294
1094 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 239