Search results for: multilevel sampling
3041 Prevalence and Spatial Distribution of Anaemia in Ethiopia using 2011 EDHS
Authors: Bedilu A. Ejigu, Eshetu Wencheko, Kiros Berhane
Abstract:
Anaemia is a condition in which the haemoglobin concentration falls below an established cut-off value due to a decrease in the number and size of red blood cells. The current study aimed to assess the spatial pattern and identify predictors related to anaemia using the third Ethiopian demographic health survey which was conducted in 2010. To achieve this objective, this study took into account the clustered nature of the data. As a result, multilevel modeling has been used in the statistical analysis. For analysis purpose, only complete cases from 15,909 females, and 13,903 males were considered. Among all subjects who agreed for haemoglobin test, 5.49 %males, and 19.86% females were anaemic. In both binary and ordinal outcome modeling approaches, educational level, age, wealth index, BMI and HIV status were identified to be significant predictors for anaemia prevalence. Furthermore, it was noted that pregnant women were more anaemic than non-pregnant women. As revealed by Moran's I test, significant spatial autocorrelation was noted across clusters. The risk of anaemia was found to vary across different regions, and higher prevalence was observed in Somali and Affar region.Keywords: anaemia, Moran's I test, multilevel models, spatial pattern
Procedia PDF Downloads 4243040 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial
Procedia PDF Downloads 1423039 REFLEX: A Randomized Controlled Trial to Test the Efficacy of an Emotion Regulation Flexibility Program with Daily Measures
Authors: Carla Nardelli, Jérome Holtzmann, Céline Baeyens, Catherine Bortolon
Abstract:
Background. Emotion regulation (ER) is a process associated with difficulties in mental health. Given its transdiagnostic features, its improvement could facilitate the recovery of various psychological issues. A limit of current studies is the lack of knowledge regarding whether available interventionsimprove ER flexibility (i.e., the ability to implement ER strategies in line with contextual demands), even though this capacity has been associated with better mental health and well-being. Therefore, the aim of the study is to test the efficacy of a 9-weeks ER group program (the Affect Regulation Training-ART), using the most appropriate measures (i.e., experience sampling method) in a student population. Plus, the goal of the study is to explore the potential mediative role of ER flexibility on mental health improvement. Method. This Randomized Controlled Trial will comparethe ER program group to an active control group (a relaxation program) in 100 participants. To test the mediative role of ER flexibility on mental health, daily measures will be used before, during, and after the interventions to evaluate the extent to which participants are flexible in their ER. Expected outcomes. Using multilevel analyses, we expect an improvement in anxious-depressive symptomatology for both groups. However, we expect the ART group to improve specifically on ER flexibility ability and the last to be a mediative variable on mental health. Conclusion. This study will enhance knowledge on interventions for students and the impact of interventions on ER flexibility. Also, this research will improve knowledge on ecological measures for assessing the effect of interventions. Overall, this project represents new opportunities to improve ER skills to improve mental health in undergraduate students.Keywords: emotion regulation flexibility, experience sampling method, psychological intervention, emotion regulation skills
Procedia PDF Downloads 1343038 Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response
Authors: Syed Ali Taqi, Muhammad Ismail
Abstract:
A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators.Keywords: two-phase sampling, ratio estimator, product estimator, generalized estimators
Procedia PDF Downloads 2333037 Understanding the Influence of Cross-National Distances on Tourist Expenditure
Authors: Wei-Ting Hung
Abstract:
Inbound tourist expenditure might not only have influenced by individual tourist characteristics but may also be affected by nationality characteristics. The cross national distance effects on tourist consumption behavior should be incorporated in the analytical framework. Additionally, the often used factor analysis, cluster analysis and regression analysis overlook the hierarchical tourist consumption data structure and may lead to misleading results. The objectives of the present study were twofold. First, we propose a multilevel model that takes individual and cross-national differences into account under a hierarchical framework. Second, we further sought to determine the types of cross-national differences affecting tourist expenditure. Thus, this study incorporates the individual tourist effects and cross national distance effects simultaneously, uses the data of 2010 Annual Survey Report on Visitors’ Expenditure and Trends in Taiwan to investigate the determinants of inbound tourist expenditure. Multilevel analysis was used to investigate the influence of individual tourist effects and cross national distance effects on inbound tourist expenditure. The empirical results show that cross national distance plays a crucial role in tourist consumption behavior. Our findings also indicate age and income have positive influence on tourism expenditure., whereas education and gender do not have significant impact. Regarding macro-level factors, geographic and cultural differences exhibited significant positive relationships on tourism expenditure, while economic differences did not. Based on the above empirical results, it is suggested that tour operators should take tourists’ individual attributes, particularly their income and age, into consideration when arranging tours. In addition, nationality holds sway over tourists’ consumption behavior, of which geographic and cultural differences are the two major factors at play. The empirical results of this study serve as practical suggestions for tourism marketing strategies and policy implications for government policies.Keywords: cross national distance, inbound tourist, multilevel analysis, tourist expenditure
Procedia PDF Downloads 3593036 How Polarization and Ideological Divisiveness Increase the Likelihood of Executive Action: Evidence from the Italian Case
Authors: Umberto Platini
Abstract:
This paper analyses the role of government fragmentation as predictor of the use of emergency decrees in parliamentary democracies. In particular, it focuses on the relationship between ideological divisiveness within cabinets and the choice by executives to issue emergency decrees rather initiating ordinary legislative procedures. A Bayesian multilevel analysis conducted on the population of government-initiated legislation in Italy between 1996 and 2018 finds significant evidence that those legislative proposals which are further away from the ideological centre of gravity of the executive are around three times more likely to be issued as emergency decrees. Likewise, legislative projects regulating more contentious policy areas are significantly more likely to be issued by decree. However, for more contentious issues the importance of ideological distance as a predictor diminishes. This evidence suggests that cabinets prefer decrees to ordinary legislative procedures when they expect that the bargaining environment in Parliament is more hostile. These results persist regardless of the fluctuations of the political-economic cycle. Their robustness is also tested against a battery of controls and against fixed effects both at the government level and at the legislature level.Keywords: Bayesian multilevel logit models, executive action, executive decrees, ideology, legislative studies, polarization
Procedia PDF Downloads 1033035 Hyperspectral Image Classification Using Tree Search Algorithm
Authors: Shreya Pare, Parvin Akhter
Abstract:
Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm
Procedia PDF Downloads 1753034 The Impact of Nurse-Physician Interprofessional Relationship on Nurses' Willingness to Engage in Leadership Roles: A Multilevel Modelling Approach
Authors: Sulaiman D. Al Sabei, Amy M. Ross, Christopher S. Lee
Abstract:
Nurse leaders play a fundamental role in transforming healthcare system and improving quality of patient care. Several healthcare organizations have called to increase the number of nurse leaders across all levels and in every practice setting. Identification of factors influencing nurses’ willingness to lead can inform healthcare leaders and policy makers of potentially illuminating strategies for establishing favorable work environments that motivate nurses to engage in leadership roles. The aim of this study was to investigate determinants of nurses’ willingness to engage in future leadership roles. The study was conducted at a public hospital in the Sultanate of Oman. A total of 171 registered nurses participated. A multilevel modeling was conducted. Findings revealed that 80% of nurses were likely to seek out opportunities to engage in leadership roles. The quality of the nurse-physician collegial relationships was a significant predictor of nurses’ willingness to lead. Establishing a work environment’s culture of positive nurse-physician relationships is critical to enhance nurses’ work attitude and engage them in leadership roles.Keywords: interprofessional relationship, leadership, motivation, nurses
Procedia PDF Downloads 1913033 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 5213032 Spatially Random Sampling for Retail Food Risk Factors Study
Authors: Guilan Huang
Abstract:
In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling
Procedia PDF Downloads 3503031 Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste
Authors: Soukaina Oujana, Peggy Zwolinski
Abstract:
Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented.Keywords: fines, non-hazardous waste, recovery, shredding residues, waste characterization, waste sampling
Procedia PDF Downloads 1883030 Reinventing Urban Governance: Sustainable Transport Solutions for Mitigating Climate Risks in Smart Cities
Authors: Jaqueline Nichi, Leila Da Costa Ferreira, Fabiana Barbi Seleguim, Gabriela Marques Di Giulio, Mariana Barbieri
Abstract:
The transport sector is responsible for approximately 55% of global greenhouse gas (GHG) emissions, in addition to pollution and other negative externalities, such as road accidents and congestion, that impact the routine of those who live in large cities. The objective of this article is to discuss the application and use of distinct mobility technologies such as climate adaptation and mitigation measures in the context of smart cities in the Global South. The documentary analysis is associated with 22 semi structured interviews with managers who work with mobility technologies in the public and private sectors and in civil society organizations to explore solutions in multilevel governance for smart and low-carbon mobility based on the case study from the city of São Paulo, Brazil. The hypothesis that innovation and technology to mitigate and adapt to climate impacts are not yet sufficient to make mobility more sustainable has been confirmed. The results indicate four relevant aspects for advancing a climate agenda in smart cities: integrated planning, coproduction of knowledge, experiments in governance, and new means of financing to guarantee the sustainable sociotechnical transition of the sector.Keywords: urban mobility, climate change, smart cities, multilevel governance
Procedia PDF Downloads 553029 One-off Separation of Multiple Types of Oil-in-Water Emulsions with Surface-Engineered Graphene-Based Multilevel Structure Materials
Authors: Han Longxiang
Abstract:
In the process of treating industrial oil wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM has a wide range of applications in oil-in-water emulsions separation in industry and environmental science.Keywords: emulsion, filtration, graphene, one-step
Procedia PDF Downloads 783028 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 3493027 One-off Separation of Multiple Types of Oil-In-Water Emulsions With Surface-Engineered Graphene-Based Multilevel Structure Materials
Authors: Han Longxiang
Abstract:
In the process of treating industrial oily wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) which can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM have a wide range of applications in oil-in-water emulsions separation in industry and environmental science.Keywords: emulsion, filtration, graphene, one-step
Procedia PDF Downloads 883026 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 4933025 Reduced Switch Count Asymmetrical Multilevel Inverter Topology
Authors: Voodi Kalandhar, Veera Reddy, Yuva Tejasree
Abstract:
Researchers have become interested in multilevel inverters (MLI) because of their potential for medium- and high-power applications. MLIs are becoming more popular as a result of their ability to generate higher voltage levels, minimal power losses, small size, and low price. These inverters used in high voltage and high-power applications because the stress on the switch is low. Even though many traditional topologies, such as the cascaded H-bridge MLI, the flying capacitor MLI, and the diode clamped MLI, exist, they all have some drawbacks. A complicated control system is needed for the flying capacitor MLI to balance the voltage across the capacitor and diode clamped MLI requires more no of diodes when no of levels increases. Even though the cascaded H-Bridge MLI is popular in terms of modularity and simple control, it requires more no of isolated DC source. Therefore, a topology with fewer devices has always been necessary for greater efficiency and reliability. A new single-phase MLI topology has been introduced to minimize the required switch count in the circuit and increase output levels. With 3 dc voltage sources, 8 switches, and 13 levels at the output, this new single- phase MLI topology was developed. To demonstrate the proposed converter's superiority over the other MLI topologies currently in use, a thorough analysis of the proposed topology will be conducted.Keywords: DC-AC converter, multi-level inverter (MLI), diodes, H-bridge inverter, switches
Procedia PDF Downloads 813024 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 1243023 The Effects of Subjective and Objective Indicators of Inequality on Life Satisfaction in a Comparative Perspective Using a Multi-Level Analysis
Authors: Atefeh Bagherianziarat, Dana Hamplova
Abstract:
The inverse social gradient in life satisfaction (LS) is a well-established research finding. To estimate the influence of inequality on LS, most of the studies have explored the effect of the objective aspects of inequality or individuals’ socioeconomic status (SES). However, relatively fewer studies have confirmed recently the significant effect of the subjective aspect of inequality or subjective socioeconomic status (SSS) on life satisfaction over and above SES. In other words, it is confirmed by some studies that individuals’ perception of their unequal status in society or SSS can moderate the impact of their absolute unequal status on their life satisfaction. Nevertheless, this newly confirmed moderating link has not been affirmed to work likewise in societies with different levels of social inequality and also for people who believe in the value of equality, at different levels. In this study, we compared the moderative influence of subjective inequality on the link between objective inequality and life satisfaction. In particular, we focus on differences across welfare state regimes based on Esping-Andersen's theory. Also, we explored the moderative role of believing in the value of equality on the link between objective and subjective inequality on LS in the given societies. Since our studied variables were measured at both individual and country levels, we applied a multilevel analysis to the European Social Survey data (round 9). The results showed that people in deferent regimes reported statistically meaningful different levels of life satisfaction that is explained to different extends by their household income and their perception of their income inequality. The findings of the study supported the previous findings of the moderator influence of perceived inequality on the link between objective inequality and LS. However, this link is different in various welfare state regimes. The results of the multilevel modeling showed that country-level subjective equality is a positive predictor for individuals’ life satisfaction, while the GINI coefficient that was considered as the indicator of absolute inequality has a smaller effect on life satisfaction. Also, country-level subjective equality moderates the confirmed link between individuals’ income and their life satisfaction. It can be concluded that both individual and country-level subjective inequality slightly moderate the effect of individuals’ income on their life satisfaction.Keywords: individual values, life satisfaction, multilevel analysis, objective inequality, subjective inequality, welfare regimes status
Procedia PDF Downloads 973022 Democratic Political Socialization of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok
Authors: Mathinee Khongsatid, Phusit Phukamchanoad, Sakapas Saengchai
Abstract:
This research aims to study the democratic political socialization of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok by using stratified sampling for probability sampling and using purposive sampling for non-probability sampling to collect data toward the distribution of questionnaires to 300 respondents. This covers all of the schools under the authority of Dusit District Office. The researcher analyzed the data by using descriptive statistics which include arithmetic mean and standard deviation. The result shows that 5th and 6th graders under the authority of Dusit District Office, Bangkok, have displayed some characteristics following democratic political socialization both inside and outside classroom as well as outside school. However, the democratic political socialization in classroom through grouping and class participation is much more emphasized.Keywords: democratic, political socialization, students grades 5-6, descriptive statistics
Procedia PDF Downloads 2743021 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)
Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj
Abstract:
Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.Keywords: ROP, ridge, multilevel vessel enhancement, biomedical
Procedia PDF Downloads 4083020 Assessment and Control for Oil Aerosol
Authors: Chane-Yu Lai, Xiang-Yu Huang
Abstract:
This study conducted an assessment of sampling result by using the new development rotation filtration device (RFD) filled with porous media filters integrating the method of cyclone centrifugal spins. The testing system established for the experiment used corn oil and potassium sodium tartrate tetrahydrate (PST) as challenge aerosols and were produced by using an Ultrasonic Atomizing Nozzle, a Syringe Pump, and a Collison nebulizer. The collection efficiency of RFD for oil aerosol was assessed by using an Aerodynamic Particle Sizer (APS) and a Fidas® Frog. The results of RFD for the liquid particles condition indicated the cutoff size was 1.65 µm and 1.02 µm for rotation of 0 rpm and 9000 rpm, respectively, under an 80 PPI (pores per inch)foam with a thickness of 80 mm, and sampling velocity of 13.5 cm/s. As the experiment increased the foam thickness of RFD, the cutoff size reduced from 1.62 µm to 1.02 µm. However, when increased the foam porosity of RFD, the cutoff size reduced from 1.26 µm to 0.96 µm. Moreover, as increased the sampling velocity of RFD, the cutoff size reduced from 1.02 µm to 0.76 µm. These discrepancies of above cutoff sizes of RFD all had statistical significance (P < 0.05). The cutoff size of RFD for three experimental conditions of generated liquid oil particles, solid PST particles or both liquid oil and solid PST particles was 1.03 µm, 1.02 µm, or 0.99 µm, respectively, under a 80 PPI foam with thickness of 80 mm, rotation of 9000 rpm, and sampling velocity of 13.5 cm/s. In addition, under the best condition of the experiment, two hours of sampling loading, the RFD had better collection efficiency for particle diameter greater than 0.45 µm, under a 94 PPI nickel mesh with a thickness of 68 mm, rotation of 9000 rpm, and sampling velocity of 108.3 cm/s. The experiment concluded that increased the thickness of porous media, face velocity, and porosity of porous media of RFD could increase the collection efficiency of porous media for sampling oil particles. Moreover, increased the rotation speed of RFD also increased the collection efficiency for sampling oil particles. Further investigation is required for those above operation parameters for RFD in this study in the future.Keywords: oil aerosol, porous media filter, rotation, filtration
Procedia PDF Downloads 4023019 Spatial Analysis and Determinants of Number of Antenatal Health Care Visit Among Pregnant Women in Ethiopia: Application of Spatial Multilevel Count Regression Models
Authors: Muluwerk Ayele Derebe
Abstract:
Background: Antenatal care (ANC) is an essential element in the continuum of reproductive health care for preventing preventable pregnancy-related morbidity and mortality. Objective: The aim of this study is to assess the spatial pattern and predictors of ANC visits in Ethiopia. Method: This study was done using Ethiopian Demographic and Health Survey data of 2016 among 7,174 pregnant women aged 15-49 years which was a nationwide community-based cross-sectional survey. Spatial analysis was done using Getis-Ord Gi* statistics to identify hot and cold spot areas of ANC visits. Multilevel glmmTMB packages adjusted for spatial effects were used in R software. Spatial multilevel count regression was conducted to identify predictors of antenatal care visits for pregnant women, and proportional change in variance was done to uncover the effect of individual and community-level factors of ANC visits. Results: The distribution of ANC visits was spatially clustered Moran’s I = 0.271, p<.0.001, ICC = 0.497, p<0.001). The highest spatial outlier areas of ANC visit was found in Amhara (South Wollo, Weast Gojjam, North Shewa), Oromo (west Arsi and East Harariga), Tigray (Central Tigray) and Benishangul-Gumuz (Asosa and Metekel) regions. The data was found with excess zeros (34.6%) and over-dispersed. The expected ANC visit of pregnant women with pregnancy complications was higher at 0.7868 [ARR= 2.1964, 95% CI: 1.8605, 2.5928, p-value <0.0001] compared to pregnant women who had no pregnancy complications. The expected ANC visit of a pregnant woman who lived in a rural area was 1.2254 times higher [ARR=3.4057, 95% CI: 2.1462, 5.4041, p-value <0.0001] as compared to a pregnant woman who lived in an urban. The study found dissimilar clusters with a low number of zero counts for a mean number of ANC visits surrounded by clusters with a higher number of counts of an average number of ANC visits when other variables held constant. Conclusion: This study found that the number of ANC visits in Ethiopia had a spatial pattern associated with socioeconomic, demographic, and geographic risk factors. Spatial clustering of ANC visits exists in all regions of Ethiopia. The predictor age of the mother, religion, mother’s education, husband’s education, mother's occupation, husband's occupation, signs of pregnancy complication, wealth index and marital status had a strong association with the number of ANC visits by each individual. At the community level, place of residence, region, age of the mother, sex of the household head, signs of pregnancy complications and distance to health facility factors had a strong association with the number of ANC visits.Keywords: Ethiopia, ANC, spatial, multilevel, zero inflated Poisson
Procedia PDF Downloads 743018 Temporal Effects on Chemical Composition of Treated Wastewater and Borehole Water Used for Irrigation in Limpopo Province, South Africa
Authors: Pholosho M. Kgopa, Phatu W. Mashela, Alen Manyevere
Abstract:
Increasing incidents of drought spells in most Sub-Saharan Africa call for using alternative sources of water for irrigation in arid and semi-arid regions. A study was conducted to investigate chemical composition of borehole and treated wastewater from different sampling disposal sites at University of Limpopo Experimental Farm (ULEF). A 4 × 5 factorial experiment, with the borehole as a reference sampling site and three other sampling sites along the wastewater disposal system was conducted over five months. Water samples were collected at four sites namely, (a) exit from Pond 16 into the furrow, (b) entry into night-dam, (c) exit from night dam to irrigated fields and (d) exit from borehole to irrigated fields. Water samples were collected in the middle of each month, starting from July to November 2016. Samples were analysed for pH, EC, Ca, Mg, Na, K, Al, B, Zn, Cu, Cr, Pb, Cd and As. The site × time interactions were highly significant for Ca, Mg, Zn, Cu, Cr, Pb, Cd, and As variables, but not for Na and K. Sampling site was highly significant on all variables, with sampling period not significant for K and Na. Relative to water from the borehole, Na concentration in wastewater samples from the night-dam exit, night-dam entry and Pond16 exit were lower by 69, 34 and 55%, respectively. Relative to borehole water, Al was higher in wastewater sampling sites. In conclusion, both sampling site and period affected the chemical composition of treated wastewater.Keywords: irrigation water quality, spatial effects, temporal effects, water reuse, water scarcity
Procedia PDF Downloads 2383017 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 1673016 A Multilevel Approach of Reproductive Preferences and Subsequent Behavior in India
Authors: Anjali Bansal
Abstract:
Reproductive preferences mainly deal with two questions: when a couple wants children and how many they want. Questions related to these desires are often included in the fertility surveys as they can provide relevant information on the subsequent behavior. The aim of the study is to observe whether respondent’s response to these questions changed over time or not. We also tried to identify socio- economic and demographic factors associated with the stability (or instability) of fertility preferences. For this purpose, we used IHDS1 (2004-05) and follow up survey IHDS2 (2011-12) data and applied bivariate, multivariate and multilevel repeated measure analysis to it to find the consistency between responses. From the analysis, we found that preferences of women changes over the course of time as from the bivariate analysis we have found that 52% of women are not consistent in their desired family size and huge inconsistency are found in desire to continue childbearing. To get a better overlook of these inconsistencies, we have computed Intra Class Correlation (ICC) which tries to explain the consistency between individuals on their fertility responses at two time periods. We also explored that husband’s desire for additional child specifically male offspring contribute to these variations. Our findings lead us to a cessation that in India, individuals fertility preferences changed over a seven-year time period as the Intra Class correlation comes out to be very small which explains the variations among individuals. Concerted efforts should be made, therefore, to educate people, and conduct motivational programs to promote family planning for family welfare.Keywords: change, consistency, preferences, over time
Procedia PDF Downloads 1653015 Ratio Type Estimators for the Estimation of Population Coefficient of Variation under Two-Stage Sampling
Authors: Muhammad Jabbar
Abstract:
In this paper we propose two ratio and ratio type exponential estimator for the estimation of population coefficient of variation using the auxiliary information under two-stage sampling. The properties of these estimators are derived up to first order of approximation. The efficiency conditions under which suggested estimator are more efficient, are obtained. Numerical and simulated studies are conducted to support the superiority of the estimators. Theoretically and numerically, we have found that our proposed estimator is always more efficient as compared to its competitor estimator.Keywords: two-stage sampling, coefficient of variation, ratio type exponential estimator
Procedia PDF Downloads 5273014 Metropolis-Hastings Sampling Approach for High Dimensional Testing Methods of Autonomous Vehicles
Authors: Nacer Eddine Chelbi, Ayet Bagane, Annie Saleh, Claude Sauvageau, Denis Gingras
Abstract:
As recently stated by National Highway Traffic Safety Administration (NHTSA), to demonstrate the expected performance of a highly automated vehicles system, test approaches should include a combination of simulation, test track, and on-road testing. In this paper, we propose a new validation method for autonomous vehicles involving on-road tests (Field Operational Tests), test track (Test Matrix) and simulation (Worst Case Scenarios). We concentrate our discussion on the simulation aspects, in particular, we extend recent work based on Importance Sampling by using a Metropolis-Hasting algorithm (MHS) to sample collected data from the Safety Pilot Model Deployment (SPMD) in lane-change scenarios. Our proposed MH sampling method will be compared to the Importance Sampling method, which does not perform well in high-dimensional problems. The importance of this study is to obtain a sampler that could be applied to high dimensional simulation problems in order to reduce and optimize the number of test scenarios that are necessary for validation and certification of autonomous vehicles.Keywords: automated driving, autonomous emergency braking (AEB), autonomous vehicles, certification, evaluation, importance sampling, metropolis-hastings sampling, tests
Procedia PDF Downloads 2873013 UWB Channel Estimation Using an Efficient Sub-Nyquist Sampling Scheme
Authors: Yaacoub Tina, Youssef Roua, Radoi Emanuel, Burel Gilles
Abstract:
Recently, low-complexity sub-Nyquist sampling schemes based on the Finite Rate of Innovation (FRI) theory have been introduced to sample parametric signals at minimum rates. The multichannel modulating waveforms (MCMW) is such an efficient scheme, where the received signal is mixed with an appropriate set of arbitrary waveforms, integrated and sampled at rates far below the Nyquist rate. In this paper, the MCMW scheme is adapted to the special case of ultra wideband (UWB) channel estimation, characterized by dense multipaths. First, an appropriate structure, which accounts for the bandpass spectrum feature of UWB signals, is defined. Then, a novel approach to decrease the number of processing channels and reduce the complexity of this sampling scheme is presented. Finally, the proposed concepts are validated by simulation results, obtained with real filters, in the framework of a coherent Rake receiver.Keywords: coherent rake receiver, finite rate of innovation, sub-nyquist sampling, ultra wideband
Procedia PDF Downloads 2553012 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 158